cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038181 Number of "connected animals" formed from n 4-gon or 6-gon connected truncated octahedra in the b.c.c. lattice, allowing translation and rotations of the lattice and reflections.

This page as a plain text file.
%I A038181 #29 Jul 08 2025 22:09:33
%S A038181 1,2,6,35,251,2602,30900,400818,5401599,74617105,1047497078,
%T A038181 14888851869
%N A038181 Number of "connected animals" formed from n 4-gon or 6-gon connected truncated octahedra in the b.c.c. lattice, allowing translation and rotations of the lattice and reflections.
%C A038181 These are "free polyforms" consisting of face-connected polyhedral cells in the bitruncated cubic honeycomb. - _Peter Kagey_, Jun 23 2025
%H A038181 S. T. Coffin, <a href="http://www.johnrausch.com/PuzzlingWorld/">Puzzling World of Polyhedral Dissections</a>, Oxford Univ. Press, 1991.
%H A038181 M. Owen, <a href="http://www.quinapalus.com/splatts.html">Splatts</a>
%H A038181 T. Sillke, <a href="http://www.mathematik.uni-bielefeld.de/~sillke/PENTA/notar">Notations for polyspheres</a>
%H A038181 <a href="/index/Ba#bcc">Index entries for sequences related to b.c.c. lattice</a>
%H A038181 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bitruncated_cubic_honeycomb">Bitruncated cubic honeycomb</a>
%Y A038181 Cf. A000162, A038119, A038168-A038174, A038180, A038386.
%K A038181 nonn,more
%O A038181 1,2
%A A038181 Torsten Sillke (TORSTEN.SILLKE(AT)LHSYSTEMS.COM)
%E A038181 More terms from _Achim Flammenkamp_
%E A038181 Definition corrected by _Fred Bayer_, Aug 11 2010
%E A038181 More terms from _Mark Owen_, Oct 11 2013