cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038186 Numbers divisible by the sum and product of their digits.

This page as a plain text file.
%I A038186 #47 Feb 16 2024 10:10:13
%S A038186 1,2,3,4,5,6,7,8,9,12,24,36,111,112,132,135,144,216,224,312,315,432,
%T A038186 612,624,735,1116,1212,1296,1332,1344,1416,2112,2232,2916,3132,3168,
%U A038186 3276,3312,4112,4224,6624,6912,8112,9612,11112,11115,11133,11172,11232
%N A038186 Numbers divisible by the sum and product of their digits.
%C A038186 The property "numbers divisible by the sum and product of their digits" leads to the Diophantine equation t*x1*x2*...*xr=s*(x1+x2+...+xr), where t and s are divisors of n; xi is from [1...9]. This corresponds to some arithmetic problems in geometry, see Sándor, 2002. - _Ctibor O. Zizka_, Mar 04 2008
%H A038186 David A. Corneth, <a href="/A038186/b038186.txt">Table of n, a(n) for n = 1..10352</a> (first 1000 terms from T. D. Noe)
%H A038186 József Sándor, <a href="http://www.gallup.unm.edu/~smarandache/JozsefSandor2.pdf">Geometric Theorems, Diophantine Equations and Arithmetic Functions</a>, American Research Press, Rehoboth, 2002.
%F A038186 A188641(a(n)) * A188642(a(n)) = 1. - _Reinhard Zumkeller_, Apr 07 2011
%t A038186 dspQ[n_]:=Module[{idn=IntegerDigits[n],t},t=Times@@idn;t!=0 && Divisible[n,Total[idn]] && Divisible[n,t]]; Select[Range[11500],dspQ] (* _Harvey P. Dale_, Jul 11 2011 *)
%o A038186 (Haskell)
%o A038186 import Data.List (elemIndices)
%o A038186 a038186 n = a038186_list !! (n-1)
%o A038186 a038186_list = map succ $ elemIndices 1
%o A038186                $ zipWith (*) (map a188641 [1..]) (map a188642 [1..])
%o A038186 -- _Reinhard Zumkeller_, Apr 07 2011
%o A038186 (PARI) for(n=1,10^4,d=digits(n);s=sumdigits(n);p=prod(i=1,#d,d[i]);if(p&&!(n%s+n%p),print1(n,", "))) \\ _Derek Orr_, Apr 29 2015
%o A038186 (Python)
%o A038186 from math import prod
%o A038186 def sd(n): return sum(map(int, str(n)))
%o A038186 def pd(n): return prod(map(int, str(n)))
%o A038186 def ok(n): return n%sd(n) == 0 and pd(n) and n%pd(n) == 0
%o A038186 def aupto(limit): return [m for m in range(1, limit+1) if ok(m)]
%o A038186 print(aupto(11233)) # _Michael S. Branicky_, Jan 28 2021
%Y A038186 Intersection of A005349 and A007602. - _Reinhard Zumkeller_, Apr 07 2011
%Y A038186 Cf. A188641, A188642.
%K A038186 nonn,base,nice,look
%O A038186 1,2
%A A038186 _Felice Russo_
%E A038186 More terms from _Patrick De Geest_, Jun 15 1999