cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038200 Row sums of triangle K(m, n), inverse to triangle T(m,n) in A020921.

This page as a plain text file.
%I A038200 #17 Jan 05 2025 19:51:35
%S A038200 1,0,-1,3,-8,21,-54,134,-318,720,-1560,3259,-6641,13391,-27107,55657,
%T A038200 -116244,245823,-521738,1101566,-2299215,4730990,-9601095,19273729,
%U A038200 -38446742,76598275,-153119606,308061214,-624460449,1274268038,-2611866713,5362888620,-11003127203,22516189988
%N A038200 Row sums of triangle K(m, n), inverse to triangle T(m,n) in A020921.
%C A038200 The triangle K is A126713.
%H A038200 Temba Shonhiwa, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/37-1/shonhiwa.pdf">A Generalization of the Euler and Jordan Totient Functions</a>, Fib. Quart., 37 (1999), 67-76.
%H A038200 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A038200 Inverse binomial transform of tau(n) = A000005(n): Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A000005(k). - _Vladeta Jovovic_, Oct 29 2002
%F A038200 E.g.f.: exp(-x)*Sum_{k>=1} d(k)*x^k/k!. - _Ilya Gutkovskiy_, Nov 26 2017
%Y A038200 Cf. A126713, A020921.
%K A038200 sign
%O A038200 1,4
%A A038200 Temba Shonhiwa (Temba(AT)maths.uz.ac.zw)
%E A038200 Better description from Michael Somos