This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038202 #49 Feb 16 2025 08:32:38 %S A038202 1,1,3,1,9,27,15,18,288,288,420,464,1856,10080,46848,210240,400320, %T A038202 652848,3991680,27528402,32659200,163296000,1143463200,1305467240, %U A038202 6840489600,9453465438,337082683248,163425485250,8376514506360,8440230839040,5088099594240 %N A038202 Least k such that n! + k^2 is a square. %C A038202 Let f = n!/4 and let x be the largest divisor of f such that x < sqrt(f). Then a(n) = f/x - x. The greatest k such that n! + k^2 is a square is f-1. The number of k for which n! + k^2 is a square is A038548(n). - _T. D. Noe_, Nov 02 2004 %C A038202 For greatest k such that n! + k^2 is a square see A181892; for numbers x such that n! + k^2 = x^2 see A181896. - _Artur Jasinski_, Mar 31 2012 %H A038202 Sudipta Mallick, <a href="/A038202/b038202.txt">Table of n, a(n) for n = 4..58</a> %H A038202 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BrocardsProblem.html">Brocard's Problem</a> %t A038202 Table[f=n!/4; x=Max[Select[Divisors[f], #<=Sqrt[f]&]]; f/x-x, {n, 4, 20}] (* _T. D. Noe_, Nov 02 2004 *) %o A038202 (PARI) a(n) = my(k=0); while(!issquare(n!+k^2), k++); k; \\ _Michel Marcus_, Sep 16 2018 %Y A038202 Cf. A038548 (number of divisors of n that are at most sqrt(n)), A068869. %Y A038202 Cf. A181892, A181896. %K A038202 nonn %O A038202 4,3 %A A038202 _David W. Wilson_ %E A038202 a(30)-a(34) from _Jon E. Schoenfield_, Sep 15 2018