This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038213 #31 Jan 28 2022 07:41:37 %S A038213 1,3,14,70,353,1782,8997,45425,229347,1157954,5846414,29518061, %T A038213 149034250,752461609,3799116465,19181424995,96845429254,488964567014, %U A038213 2468741680809,12464472679038,62932092237197,317738931708801 %N A038213 Top line of 3-wave sequence A038196, also bisection of A006356. %H A038213 Johann Cigler, <a href="https://mathoverflow.net/questions/372642/number-of-bounded-dyck-paths-with-negative-length">Number of bounded Dyck paths with "negative length"</a>, MathOverflow question, Sep 26 2020. %H A038213 S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, <a href="http://arxiv.org/abs/1008.3359">2-frieze patterns and the cluster structure of the space of polygons</a>, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987; arXiv:1008.3359 [math.AG], 2010-2011. - _N. J. A. Sloane_, Dec 26 2012 %H A038213 F. v. Lamoen, <a href="http://home.wxs.nl/~lamoen/wiskunde/wave.htm">Wave sequences</a> %H A038213 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6, -5, 1). %F A038213 Let v(3)=(1, 1, 1), let M(3) be the 3 X 3 matrix m(i, j) =min(i, j); then a(n)= min ( v(3)*M(3)^n). - _Benoit Cloitre_, Oct 03 2002 %F A038213 G.f.: -((1 + (-3 + q)*q)/(-1 + (-3 + q)*(-2 + q)*q)). - _Wouter Meeussen_, Mar 19 2005 %F A038213 G.f.: (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3). %F A038213 a(-n) = A080937(n) for all n in Z. a(n + 2) * a(n) - a(n + 1)^2 = a(-3 - n) for all n in Z. - _Michael Somos_, May 04 2012 %e A038213 G.f. = 1 + 3*x + 14*x^2 + 70*x^3 + 353*x^4 + 1782*x^5 + 8997*x^6 + 45425*x^7 + ... %o A038213 (PARI) k=3; M(k)=matrix(k,k,i,j,min(i,j)); v(k)=vector(k,i,1); a(n)=vecmin(v(k)*M(k)^n) %o A038213 (PARI) {a(n) = if( n<0, n = -n; polcoeff( (1 - 4*x + 3*x^2) / (1 - 5*x + 6*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n))}; /* _Michael Somos_, May 04 2012 */ %Y A038213 Cf. A080937. %K A038213 nonn,easy %O A038213 0,2 %A A038213 _Floor van Lamoen_ %E A038213 More terms from _Benoit Cloitre_, Oct 03 2002