This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038279 #34 Jul 28 2018 11:54:17 %S A038279 1,8,1,64,16,1,512,192,24,1,4096,2048,384,32,1,32768,20480,5120,640, %T A038279 40,1,262144,196608,61440,10240,960,48,1,2097152,1835008,688128, %U A038279 143360,17920,1344,56,1,16777216,16777216,7340032,1835008,286720 %N A038279 Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*1^j. %C A038279 T(i,j) is the number of i-permutations of 9 objects a,b,c,d,e,f,g,h,i with repetition allowed, containing j a's. - _Zerinvary Lajos_, Dec 21 2007 %C A038279 Triangle of coefficients in expansion of (8 + x)^n, where n is a nonnegative integer. - _Zagros Lalo_, Jul 21 2018 %D A038279 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48 %H A038279 Muniru A Asiru, <a href="/A038279/b038279.txt">Rows n=0..50 of triangle, flattened</a> %H A038279 B. N. Cyvin et al., <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match34/match34_109-121.pdf">Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons</a>, Match, No. 34 (Oct 1996), pp. 109-121. %F A038279 T(0,0) = 1; T(n,k) = 8 T(n-1,k) + T(n-1,k-1) for k = 0..n; T(n,k)=0 for n or k < 0. - _Zagros Lalo_, Jul 21 2018 %e A038279 1 %e A038279 8, 1 %e A038279 64, 16, 1 %e A038279 512, 192, 24, 1 %e A038279 4096, 2048, 384, 32, 1 %e A038279 32768, 20480, 5120, 640, 40, 1 %e A038279 262144, 196608, 61440, 10240, 960, 48, 1 %e A038279 2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1 %e A038279 16777216, 16777216, 7340032, 1835008, 286720, 28672, 1792, 64, 1 %p A038279 for i from 0 to 8 do seq(binomial(i, j)*8^(i-j), j = 0 .. i) od; # _Zerinvary Lajos_, Dec 21 2007 %t A038279 t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 8 t[n - 1, k] + t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Zagros Lalo_, Jul 21 2018 *) %t A038279 Table[CoefficientList[ Expand[(8 + x)^n], x], {n, 0, 8}] // Flatten (* _Zagros Lalo_, Jul 22 2018 *) %t A038279 Table[CoefficientList[Binomial[i, j] * 8^(i - j) * 1^j, x], {i, 0, 8}, {j,0, i}] // Flatten (* _Zagros Lalo_, Jul 23 2018 *) %o A038279 (GAP) Flat(List([0..8],i->List([0..i],j->Binomial(i,j)*8^(i-j)*1^j))); # _Muniru A Asiru_, Jul 21 2018 %Y A038279 Cf. A317028 %K A038279 nonn,tabl,easy %O A038279 0,2 %A A038279 _N. J. A. Sloane_