This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038339 #15 Jun 13 2015 00:49:19 %S A038339 1,15,190,2353,29056,358671,4427294,54648506,674555937,8326406594, %T A038339 102777312308,1268635610806,15659451261015,193293024178230, %U A038339 2385919696236315,29450689289430149,363525688224433321 %N A038339 Bottom line of 5-wave sequence A038201, also bisection of A006358. %C A038339 Denominator of g.f. is sum{k=0..5, (-1)^(k+1)*binomial(10-k,k)x^(5-k)}. This is det(J-x*I) where I is the 5x5 identity matrix and J is the matrix [1 1 0 0 0] [1 2 1 0 0] [0 1 2 1 0] [0 0 1 2 1] [0 0 0 1 2] - _Paul Barry_, May 11 2006 %H A038339 F. v. Lamoen, <a href="http://home.wxs.nl/~lamoen/wiskunde/wave.htm">Wave sequences</a> %H A038339 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (15,-35,28,-9,1). %F A038339 Let v(5)=(1, 1, 1, 1, 1), let M(5) be the 5 X 5 matrix m(i, j) =min(i, j); then a(n)= Max ( v(5)*M(5)^n) - _Benoit Cloitre_, Oct 03 2002 %F A038339 G.f.: 1/(1-15x+35x^2-28x^3+9x^4-x^5); - _Paul Barry_, May 11 2006 %o A038339 (PARI) k=5; M(k)=matrix(k,k,i,j,min(i,j)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n) %K A038339 nonn %O A038339 0,2 %A A038339 _Floor van Lamoen_ %E A038339 More terms from _Benoit Cloitre_, Oct 03 2002