cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038387 a(n) is the smallest number such that the arithmetic mean (A) and geometric mean (G) of n and a(n) are both integers.

This page as a plain text file.
%I A038387 #32 Oct 27 2022 07:31:45
%S A038387 1,2,3,4,5,6,7,2,1,10,11,12,13,14,15,4,17,2,19,20,21,22,23,6,1,26,3,
%T A038387 28,29,30,31,2,33,34,35,4,37,38,39,10,41,42,43,44,5,46,47,12,1,2,51,
%U A038387 52,53,6,55,14,57,58,59,60,61,62,7,4,65,66,67,68,69,70,71,2,73,74,3,76,77,78
%N A038387 a(n) is the smallest number such that the arithmetic mean (A) and geometric mean (G) of n and a(n) are both integers.
%H A038387 Amiram Eldar, <a href="/A038387/b038387.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Andrew Howroyd)
%F A038387 If n is odd with prime factorization p1^j1*p2^j2*...pk^jk then f(n)=p1^(j1 mod 2)*p2^(j2 mod 2)*... If n is even then f(n)=2^(2-(j1 mod 2))*p2^(j2 mod 2)*... f(n)=n whenever n is squarefree or n/2 is squarefree. (_Christian G. Bower_)
%F A038387 Multiplicative with a(p^e) = p if e is odd, 4 if p=2 and e is even, 1 if p>2 and e is even. - _Vladeta Jovovic_, May 15 2003
%F A038387 Sum_{k=1..n} a(k) ~ c * n^2, where c = 3*Pi^2/80 = 0.3701101... . - _Amiram Eldar_, Oct 27 2022
%t A038387 Table[k = 1; While[Nand @@ IntegerQ /@ {(n + k)/2, Sqrt[n*k]}, k++]; k, {n, 78}] (* _Jayanta Basu_, Jul 14 2013 *)
%t A038387 f[p_, e_] := If[OddQ[e], p, If[p == 2, 4, 1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 09 2020 *)
%o A038387 (PARI) a(n)={for(k=1, n, if((n+k)%2==0 && issquare(n*k), return(k)))} \\ _Andrew Howroyd_, Feb 12 2018
%o A038387 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1], if(f[i,1]==2, 4, 1)));} \\ _Amiram Eldar_, Oct 27 2022
%Y A038387 Cf. A038388, A038389.
%Y A038387 Cf. A053626, A053627.
%K A038387 nonn,easy,mult
%O A038387 1,2
%A A038387 _N. J. A. Sloane_
%E A038387 More terms from _Vladeta Jovovic_, May 15 2003