cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038388 Let f(n) be the smallest number such that the arithmetic mean (A) and geometric mean (G) of n and f(n) are both integers; sequence gives G values.

This page as a plain text file.
%I A038388 #28 Jul 08 2025 22:23:51
%S A038388 1,2,3,4,5,6,7,4,3,10,11,12,13,14,15,8,17,6,19,20,21,22,23,12,5,26,9,
%T A038388 28,29,30,31,8,33,34,35,12,37,38,39,20,41,42,43,44,15,46,47,24,7,10,
%U A038388 51,52,53,18,55,28,57,58,59,60,61,62,21,16,65,66,67,68,69,70,71,12,73,74,15
%N A038388 Let f(n) be the smallest number such that the arithmetic mean (A) and geometric mean (G) of n and f(n) are both integers; sequence gives G values.
%H A038388 Amiram Eldar, <a href="/A038388/b038388.txt">Table of n, a(n) for n = 1..10000</a>
%F A038388 Multiplicative with a(p^e) = p^((e+1)/2) if e is odd, 2^(e/2+1) if p=2 and e is even, p^(e/2) if p>2 and e is even. - _Vladeta Jovovic_, May 15 2003
%F A038388 Sum_{k=1..n} a(k) ~ c * n^2, where c = (13/24)*zeta(3)/zeta(2) = 0.395829... . - _Amiram Eldar_, Oct 27 2022
%t A038388 Table[k = 1; While[Nand @@ IntegerQ /@ {(n + k)/2, g = Sqrt[n*k]}, k++]; g, {n, 75}] (* _Jayanta Basu_, Jul 14 2013 *)
%t A038388 f[p_, e_] := If[OddQ[e], p^((e + 1)/2), If[p == 2, 2^(e/2 + 1), p^(e/2)]]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 09 2020*)
%o A038388 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]^((f[i,2]+1)/2), if(f[i,1]==2, 2^(f[i,2]/2+1), f[i,1]^(f[i,2]/2))));} \\ _Amiram Eldar_, Oct 27 2022
%Y A038388 Cf. A038387, A038389.
%Y A038388 Cf. A053626, A053627, A253905.
%K A038388 nonn,easy,mult
%O A038388 1,2
%A A038388 _N. J. A. Sloane_
%E A038388 More terms from _Vladeta Jovovic_, May 15 2003