cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038392 Number of mono-4-polyhexes with n cells.

Original entry on oeis.org

1, 1, 2, 6, 19, 71, 274, 1117, 4650, 19819, 85710, 375712, 1664203, 7439593, 33515758, 152019560, 693625265, 3181528275, 14661581030, 67850297506, 315187646601, 1469195636293, 6869889703638, 32215399021901, 151467334017864, 713881817440421, 3372142139764434
Offset: 1

Views

Author

Keywords

References

  • J. Brunvoll, B. N. Cyvin, and S. J. Cyvin, Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298; see Eq. 16.

Crossrefs

Apart from initial term, (A002212 + A007317)/2. See A044045 for another version.

Programs

  • Maple
    f:= gfun:-rectoproc({(250*n^2-250*n)*a(n)+(-300*n^2-150*n)*a(n+1)+(-325*n^2-875*n-600)*a(n+2)+(475*n^2+2045*n+2100)*a(n+3)+(35*n^2+265*n+540)*a(n+4)+(-193*n^2-1691*n-3660)*a(n+5)+(49*n^2+563*n+1596)*a(n+6)+(17*n^2+211*n+648)*a(n+7)+(-9*n^2-135*n-504)*a(n+8)+(n^2+17*n+72)*a(n+9), a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2, a(4) = 6, a(5) = 19, a(6) = 71, a(7) = 274, a(8) = 1117},a(n),remember):
    map(f, [$1..50]); # Robert Israel, Oct 08 2017
  • Mathematica
    f[z_] := Sqrt[5*z^2 - 6*z + 1]; g[z_] := (2*(1 - z^2) - (1-z)*f[z] - f[z^2])/ (4*(1-z)); Drop[ CoefficientList[ Series[ g[z], {z, 0, 24}], z], 1] (* Jean-François Alcover, Oct 13 2011, after Emeric Deutsch *)

Formula

G.f.: (2(1-z^2) - (1-z)f(z) - f(z^2))/(4(1-z)) where f(z) = sqrt(1-6z+5z^2). - Emeric Deutsch, Mar 14 2004
(250*n^2-250*n)*a(n)+(-300*n^2-150*n)*a(n+1)+(-325*n^2-875*n-600)*a(n+2)+(475*n^2+2045*n+2100)*a(n+3)+(35*n^2+265*n+540)*a(n+4)+(-193*n^2-1691*n-3660)*a(n+5)+(49*n^2+563*n+1596)*a(n+6)+(17*n^2+211*n+648)*a(n+7)+(-9*n^2-135*n-504)*a(n+8)+(n^2+17*n+72)*a(n+9) = 0. - Robert Israel, Oct 08 2017

Extensions

More terms from Emeric Deutsch, Mar 14 2004