This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038479 #20 Apr 05 2025 18:00:10 %S A038479 43,223,253,258,1303,1333,1338,1513,1518,1548,7783,7813,7818,7993, %T A038479 7998,8028,9073,9078,9108,9288,46663,46693,46698,46873,46878,46908, %U A038479 47953,47958,47988,48168,54433,54438,54468,54648,55728,279943,279973,279978,280153,280158,280188 %N A038479 Sums of 3 distinct powers of 6. %H A038479 Robert Israel, <a href="/A038479/b038479.txt">Table of n, a(n) for n = 1..10000</a> %p A038479 N:= 9: # to get all terms < 6^(N+1) %p A038479 seq(seq(seq(6^i+6^j+6^k,k=0..j-1),j=1..i-1),i=2..N); %t A038479 Union[Total/@Subsets[6^Range[0,8],{3}]] (* _Harvey P. Dale_, May 17 2011 *) %o A038479 (Python) %o A038479 from math import isqrt, comb %o A038479 from sympy import integer_nthroot %o A038479 def A038479(n): return 6**((r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+6**((a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))+6**(m+t+1) # _Chai Wah Wu_, Apr 05 2025 %Y A038479 Base-6 interpretation of A038445. %Y A038479 Cf. A000400, A038478, A038480. %K A038479 nonn,easy %O A038479 1,1 %A A038479 _Olivier Gérard_ %E A038479 Offset changed by _Robert Israel_, May 08 2018