cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038485 Sums of 3 distinct powers of 8.

This page as a plain text file.
%I A038485 #17 Apr 05 2025 18:25:55
%S A038485 73,521,577,584,4105,4161,4168,4609,4616,4672,32777,32833,32840,33281,
%T A038485 33288,33344,36865,36872,36928,37376,262153,262209,262216,262657,
%U A038485 262664,262720,266241,266248,266304,266752,294913,294920,294976,295424,299008,2097161,2097217
%N A038485 Sums of 3 distinct powers of 8.
%H A038485 Amiram Eldar, <a href="/A038485/b038485.txt">Table of n, a(n) for n = 1..10000</a>
%t A038485 Take[Union[Total/@Subsets[8^Range[0,10],{3}]],40] (* _Harvey P. Dale_, Jan 31 2016 *)
%o A038485 (Python)
%o A038485 from math import isqrt, comb
%o A038485 from sympy import integer_nthroot
%o A038485 def A038485(n): return (1<<3*((r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2)))+(1<<3*((a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1)))+(1<<3*(m+t+1)) # _Chai Wah Wu_, Apr 05 2025
%Y A038485 Base-8 interpretation of A038445.
%Y A038485 Cf. A001018, A038484, A038486.
%K A038485 nonn,easy
%O A038485 1,1
%A A038485 _Olivier Gérard_
%E A038485 Offset corrected by _Amiram Eldar_, Jul 14 2022