A038491 Sums of 3 distinct powers of 11.
133, 1343, 1453, 1463, 14653, 14763, 14773, 15973, 15983, 16093, 161063, 161173, 161183, 162383, 162393, 162503, 175693, 175703, 175813, 177023, 1771573, 1771683, 1771693, 1772893, 1772903, 1773013, 1786203, 1786213, 1786323
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
seq(seq(seq(11^a+11^b+11^c,c=0..b-1),b=1..a-1),a=2..10); # Robert Israel, Dec 23 2016
-
Mathematica
TakeWhile[#, # <= 1800000 &] &@ Sort@ Map[Total, 11^Subsets[Range[0, 8], {3}]] (* Michael De Vlieger, Dec 23 2016 *)
-
Python
from math import isqrt, comb from sympy import integer_nthroot def A038491(n): return 11**((r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+11**((a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))+11**(m+t+1) # Chai Wah Wu, Apr 05 2025
Formula
a(A000292(m+1)+k) = a(A000292(m)+k) + 10*11^(m+2) for 0<=k<=A000217(m). - Robert Israel, Dec 23 2016