cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038491 Sums of 3 distinct powers of 11.

Original entry on oeis.org

133, 1343, 1453, 1463, 14653, 14763, 14773, 15973, 15983, 16093, 161063, 161173, 161183, 162383, 162393, 162503, 175693, 175703, 175813, 177023, 1771573, 1771683, 1771693, 1772893, 1772903, 1773013, 1786203, 1786213, 1786323
Offset: 0

Views

Author

Keywords

Crossrefs

Base-11 interpretation of A038445.

Programs

  • Maple
    seq(seq(seq(11^a+11^b+11^c,c=0..b-1),b=1..a-1),a=2..10); # Robert Israel, Dec 23 2016
  • Mathematica
    TakeWhile[#, # <= 1800000 &] &@ Sort@ Map[Total, 11^Subsets[Range[0, 8], {3}]] (* Michael De Vlieger, Dec 23 2016 *)
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A038491(n): return 11**((r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+11**((a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))+11**(m+t+1) # Chai Wah Wu, Apr 05 2025

Formula

a(A000292(m+1)+k) = a(A000292(m)+k) + 10*11^(m+2) for 0<=k<=A000217(m). - Robert Israel, Dec 23 2016