This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038498 #19 Feb 13 2021 16:04:28 %S A038498 1,-1,1,0,-1,1,1,-1,-1,1,0,1,-1,-1,1,0,1,0,-1,-1,1,-1,1,1,0,-1,-1,1, %T A038498 -1,0,2,0,0,-1,-1,1,0,-1,0,2,0,0,-1,-1,1,0,-2,1,1,1,0,0,-1,-1,1,1,-2, %U A038498 -1,1,1,1,0,0,-1,-1,1,1,-1,-2,0,2,0,1,0,0,-1,-1,1 %N A038498 Matrix inverse of partition triangle A008284. %C A038498 Since A008284 has only ones in its first column, the sum of terms for any row n > 1 is 0. - _François Marques_, Feb 09 2021 %F A038498 T(n,n-k) = A010815(k) for k <= n/2. - _François Marques_, Feb 09 2021 %e A038498 Triangle begins: %e A038498 1; %e A038498 -1,1; %e A038498 0,-1,1; %e A038498 1,-1,-1,1; %e A038498 ... %o A038498 (PARI) tp(n, k) = if (n<1, 0, if (k<1, 0, if (k == n, 1, if (k > n, 0, tp(n-1, k-1) + tp(n-k, k))))); %o A038498 tabl(nn) = {mtp = matrix(nn, nn, n, k, tp(n, k)); mtpi = mtp^(-1); for (n = 1, nn, for (k = 1, n, print1(mtpi[n, k], ", ");); print(););} \\ _Michel Marcus_, Mar 04 2014 %Y A038498 Cf. A008284, A038497, A039800-A039810, A010815. %K A038498 sign,tabl %O A038498 1,31 %A A038498 _Christian G. Bower_, Feb 15 1999