This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038499 #36 Jan 02 2017 02:36:46 %S A038499 1,0,1,2,3,5,7,10,13,18,23,31,39,52,65,84,104,134,165,210,258,324,397, %T A038499 495,603,747,908,1115,1351,1652,1993,2425,2918,3531,4237,5106,6105, %U A038499 7330,8741,10449,12425,14804,17549,20839,24637,29155,34377,40559,47688,56100 %N A038499 Number of partitions of n into a prime number of parts. %C A038499 Also, number of partitions of n whose largest part is a prime. E.g., for a(7) = 10 we have 6+1 = 5+2 = 4+3 = 5+1+1 = 4+2+1 = 3+3+1 = 3+2+2 = 3+1+1+1+1 = 2+2+1+1+1 = 1+1+1+1+1+1+1 and 7 = 5+2 = 5+1+1 = 3+3+1 = 3+2+2 = 3+2+1+1 = 3+1+1+1+1 = 2+2+2+1 = 2+2+1+1+1 = 2+1+1+1+1+1. - _Jon Perry_ Jul 06 2004 %H A038499 Alois P. Heinz, <a href="/A038499/b038499.txt">Table of n, a(n) for n = 0..10000</a> %F A038499 G.f.: Sum_{n>=1}(x^prime(n)/Product_{i=1..prime(n)}(1-x^i)). - _Vladeta Jovovic_, Dec 25 2003 %p A038499 with(numtheory): %p A038499 b:= proc(n, i) option remember; `if`(n<0, 0, %p A038499 `if`(n=0 or i=1, 1, `if`(i<1, 0, b(n, i-1)+ %p A038499 `if`(i>n, 0, b(n-i, i))))) %p A038499 end: %p A038499 a:= n-> `if`(n=0, 1, add((p-> b(n-p, p) %p A038499 )(ithprime(i)), i=1..pi(n))): %p A038499 seq(a(n), n=0..60); # _Alois P. Heinz_, Sep 24 2015 %t A038499 nn=50;Table[CoefficientList[Series[x^p Product[1/(1-x^i),{i,1,p}],{x,0,nn}],x],{p,Table[Prime[m],{m,1,PrimePi[nn]}]}]//Total (* _Geoffrey Critzer_, Mar 10 2013 *) %Y A038499 Cf. A027187, A027193. %K A038499 nonn %O A038499 0,4 %A A038499 _Christian G. Bower_, Feb 15 1999