cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038515 Number of self-avoiding walks on a tetrahedral (diamond) net, having 2n steps and forming a closed loop.

This page as a plain text file.
%I A038515 #27 Jun 03 2022 01:43:41
%S A038515 1,0,0,6,12,120,564,4074,25008,174618,1181100,8358306,59167872,
%T A038515 427081512,3103408308,22797207330,168616517760,1256350493196
%N A038515 Number of self-avoiding walks on a tetrahedral (diamond) net, having 2n steps and forming a closed loop.
%H A038515 Anthony J. Guttmann and Iwan Jensen, <a href="https://doi.org/10.1007/978-1-4020-9927-4_16">Appendix: Series Data and Growth Constant, Amplitude and Exponent Estimates</a>, in: Polygons, Polyominoes and Polycubes, LNP 775, Springer, 2009. See Table 16.12 on p. 480 for the sequence a(n)/n.
%H A038515 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a038/A038515.java">Java program</a> (github)
%Y A038515 Cf. A001394, A001667, A001413, A001337, A344070, A344071.
%K A038515 nonn,walk,more
%O A038515 0,4
%A A038515 _Wouter Meeussen_
%E A038515 a(0)=1 and a(9)-a(15) from _Sean A. Irvine_, Jan 16 2021
%E A038515 a(16)-a(17) using the data from Guttmann & Jensen added by _Andrey Zabolotskiy_, Jun 02 2022