This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038545 #22 Jan 19 2021 21:13:32 %S A038545 1,14914341925,959924142434241924250,91409924241424243424241924242500, %T A038545 9095909924242414242424342424241924242425000, %U A038545 909140909924242424142424242434242424241924242424250000,90909590909924242424241424242424243424242424241924242424242500000 %N A038545 a(n) = Sum_{i=0..10^n} i^10. %C A038545 Jacob Bernoulli gives a(3) in Ars Conjectandi. - _Charles R Greathouse IV_, Dec 18 2019 %H A038545 Jacob Bernoulli, Ars Conjectandi (1713). (<a href="https://quod.lib.umich.edu/u/umhistmath/abz9501.0001.001/282?rgn=full+text;view=pdf">German translation?, see p. 99</a>) %H A038545 Burkard Polster, <a href="https://www.youtube.com/watch?v=fw1kRz83Fj0">Power sum MASTER CLASS: How to sum quadrillions of powers ... by hand! (Euler-Maclaurin formula)</a>, Mathologer video (2019) %F A038545 a(n) = 1/11*(10^n+1)^11 - 1/2*(10^n+1)^10 + 5/6*(10^n+1)^9 - (10^n+1)^7 + (10^n+1)^5 - 1/2*(10^n + 1)^3 + 5/66*10^n + 5/66. %F A038545 a(n) = A023002(10^n). - _Charles R Greathouse IV_, Dec 18 2019 %p A038545 a:= n-> sum(i^10, i=0..10^n): %p A038545 seq(a(n), n=0..10); # _Alois P. Heinz_, Jan 19 2021 %t A038545 Table[Sum[i^10,{i,10^n}],{n,0,5}] (* _Harvey P. Dale_, Jul 02 2016 *) %o A038545 (PARI) a(n)=(6*(10^n)^11 + 33*(10^n)^10 + 55*(10^n)^9 - 66*(10^n)^7 + 66*(10^n)^5 - 33*(10^n)^3 + 5*(10^n))/66 \\ _Charles R Greathouse IV_, Dec 18 2019, modified by _Sean A. Irvine_, Jan 19 2021 %Y A038545 Cf. A023002. %K A038545 easy,nonn %O A038545 0,2 %A A038545 _Marvin Ray Burns_