This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038548 #166 Oct 22 2024 12:53:06 %S A038548 1,1,1,2,1,2,1,2,2,2,1,3,1,2,2,3,1,3,1,3,2,2,1,4,2,2,2,3,1,4,1,3,2,2, %T A038548 2,5,1,2,2,4,1,4,1,3,3,2,1,5,2,3,2,3,1,4,2,4,2,2,1,6,1,2,3,4,2,4,1,3, %U A038548 2,4,1,6,1,2,3,3,2,4,1,5,3,2,1,6,2,2,2,4,1,6,2,3,2,2,2,6,1,3,3,5,1,4,1,4,4 %N A038548 Number of divisors of n that are at most sqrt(n). %C A038548 Number of ways to arrange n identical objects in a rectangle, modulo rotation. %C A038548 Number of unordered solutions of x*y = n. - _Colin Mallows_, Jan 26 2002 %C A038548 Number of ways to write n-1 as n-1 = x*y + x + y, 0 <= x <= y <= n. - _Benoit Cloitre_, Jun 23 2002 %C A038548 Also number of values for x where x+2n and x-2n are both squares (e.g., if n=9, then 18+18 and 18-18 are both squares, as are 82+18 and 82-18 so a(9)=2); this is because a(n) is the number of solutions to n=k(k+r) in which case if x=r^2+2n then x+2n=(r+2k)^2 and x-2n=r^2 (cf. A061408). - _Henry Bottomley_, May 03 2001 %C A038548 Also number of sums of sequences of consecutive odd numbers or consecutive even numbers including sequences of length 1 (e.g., 12 = 5+7 or 2+4+6 or 12 so a(12)=3). - _Naohiro Nomoto_, Feb 26 2002 %C A038548 Number of partitions whose consecutive parts differ by exactly two. %C A038548 a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1). - _Christian G. Bower_, Jun 06 2005 %C A038548 Also number of partitions of n such that if k is the largest part, then each of the parts 1,2,...,k-1 occurs exactly twice. Example: a(12)=3 because we have [3,3,2,2,1,1],[2,2,2,2,2,1,1] and [1,1,1,1,1,1,1,1,1,1,1,1]. - _Emeric Deutsch_, Mar 07 2006 %C A038548 a(n) is also the number of nonnegative integer solutions of the Diophantine equation 4*x^2 - y^2 = 16*n. For example, a(24)=4 because there are 4 solutions: (x,y) = (10,4), (11,10), (14,20), (25,46). - _N-E. Fahssi_, Feb 27 2008 %C A038548 a(n) is the number of even divisors of 2*n that are <= sqrt(2*n). - _Joerg Arndt_, Mar 04 2010 %C A038548 First differences of A094820. - _John W. Layman_, Feb 21 2012 %C A038548 a(n) = #{k: A027750(n,k) <= A000196(n)}; a(A008578(n)) = 1; a(A002808(n)) > 1. - _Reinhard Zumkeller_, Dec 26 2012 %C A038548 Row lengths of the tables in A161906 and A161908. - _Reinhard Zumkeller_, Mar 08 2013 %C A038548 Number of positive integers in the sequence defined by x_0 = n, x_(k+1) = (k+1)*(x_k-2)/(k+2) or equivalently by x_k = n/(k+1) - k. - _Luc Rousseau_, Mar 03 2018 %C A038548 Expanding the first comment: Number of rectangles with area n and integer side lengths, modulo rotation. Also number of 2D grids of n congruent squares, in a rectangle, modulo rotation (cf. A000005 for rectangles instead of squares; cf. A034836 for the 3D case). - _Manfred Boergens_, Jun 08 2021 %C A038548 Number of divisors of n that have an even number of prime divisors (counted with multiplicity), or in other words, number of terms of A028260 that divide n. - _Antti Karttunen_, Apr 17 2022 %D A038548 George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, page 18, exer. 21, 22. %H A038548 T. D. Noe, <a href="/A038548/b038548.txt">Table of n, a(n) for n = 1..10000</a> %H A038548 Cristina Ballantine and Mircea Merca, <a href="https://doi.org/10.1016/j.jnt.2016.06.007">New convolutions for the number of divisors</a>, Journal of Number Theory, 2016, vol. 170, pp. 17-34. %H A038548 Christopher Briggs, Y. Hirano, and H. Tsutsui, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Briggs/briggs3.html">Positive Solutions to Some Systems of Diophantine Equations</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.4. %H A038548 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph invariants based on the divides relation and ordered by prime signatures</a>, arXiv:1405.5283 [math.NT], 2014, (2.27). %H A038548 Madeline Locus Dawsey, Matthew Just and Robert Schneider, <a href="https://arxiv.org/abs/2107.14284">A "supernormal" partition statistic</a>, arXiv:2107.14284 [math.NT], 2021. See Table 2 p. 21. %H A038548 T. Verhoeff, <a href="https://cs.uwaterloo.ca/journals/JIS/trapzoid.html">Rectangular and Trapezoidal Arrangements</a>, J. Integer Sequences, Vol. 2 (1999), Article 99.1.6. %H A038548 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %F A038548 a(n) = ceiling(d(n)/2), where d(n) = number of divisors of n (A000005). %F A038548 a(2k) = A034178(2k) + A001227(k). a(2k+1) = A034178(2k+1). - _Naohiro Nomoto_, Feb 26 2002 %F A038548 G.f.: Sum_{k>=1} x^(k^2)/(1-x^k). - _Jon Perry_, Sep 10 2004 %F A038548 Dirichlet g.f.: (zeta(s)^2 + zeta(2*s))/2. - _Christian G. Bower_, Jun 06 2005 [corrected by _Vaclav Kotesovec_, Aug 19 2019] %F A038548 a(n) = (A000005(n) + A010052(n))/2. - _Omar E. Pol_, Jun 23 2009 %F A038548 a(n) = A034178(4*n). - _Michael Somos_, May 11 2011 %F A038548 2*a(n) = A161841(n). - _R. J. Mathar_, Mar 07 2021 %F A038548 a(n) = A000005(n) - A056924(n) = A056924(n) + A010052(n) = Sum_{d|n} A065043(d). - _Antti Karttunen_, Apr 17 2022 %F A038548 Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma - 1/2)*n, where gamma is Euler's constant (A001620). - _Amiram Eldar_, Nov 27 2022 %e A038548 a(4) = 2 since 4 = 2 * 2 = 4 * 1. Also A034178(4*4) = 2 since 16 = 4^2 - 0^2 = 5^2 - 3^2. - _Michael Somos_, May 11 2011 %e A038548 x + x^2 + x^3 + 2*x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + x^11 + ... %p A038548 with(numtheory): A038548 := n->ceil(sigma[0](n)/2); %t A038548 Table[ Floor[ (DivisorSigma[0, n] + 1)/2], {n, 105}] (* _Robert G. Wilson v_, Mar 02 2009 *) %t A038548 Table[Count[Divisors[n],_?(#<=Sqrt[n]&)],{n,110}] (* _Harvey P. Dale_, Jul 10 2021 *) %t A038548 Table[Sum[If[n > k*(k-1), 1, 0], {k, Divisors[n]}], {n, 1, 100}] (* _Vaclav Kotesovec_, Oct 22 2024 *) %o A038548 (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d*d <= n))} /* _Michael Somos_, Jan 25 2005 */ %o A038548 (PARI) a(n)=ceil(numdiv(n)/2) \\ _Charles R Greathouse IV_, Sep 28 2012 %o A038548 (Haskell) %o A038548 a038548 n = length $ takeWhile (<= a000196 n) $ a027750_row n %o A038548 -- _Reinhard Zumkeller_, Dec 26 2012 %o A038548 (C#) %o A038548 int A038548(int n) { %o A038548 System.Numerics.BigInteger erg = 0, i; %o A038548 for (i = 1; i * i <= n; i++) %o A038548 if (n % i == 0) erg++; %o A038548 return (int)erg; %o A038548 } // _Frank Hollstein_, Jan 08 2023 %o A038548 (Python) %o A038548 from sympy import divisor_count %o A038548 def A038548(n): return divisor_count(n)+1>>1 # _Chai Wah Wu_, Dec 19 2023 %Y A038548 Different from A068108. Records give A038549, A004778, A086921. %Y A038548 Cf. A000005, A001620, A028260, A056924, A072670, A094820, A161841, A108504. %Y A038548 Cf. A066839, A033676, row sums of A303300. %Y A038548 Inverse Möbius transform of A065043. %Y A038548 Cf. A244664 (Dgf at s=2), A244665 (Dgf at s=3). %K A038548 nonn,easy,nice %O A038548 1,4 %A A038548 _Tom Verhoeff_, _N. J. A. Sloane_