This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038549 #29 Mar 22 2017 13:53:47 %S A038549 1,4,12,24,36,60,192,120,180,240,576,360,1296,900,720,840,9216,1260, %T A038549 786432,1680,2880,15360,3600,2520,6480,61440,6300,6720,2359296,5040, %U A038549 3221225472,7560,46080,983040,25920,10080,206158430208,32400,184320 %N A038549 Least number with exactly n divisors that are at most its square root. %C A038549 Least number of identical objects that can be arranged in exactly n ways in a rectangle, modulo rotation. %C A038549 Smallest number which has n distinct unordered factorizations of the form x*y. - _Lekraj Beedassy_, Jan 09 2008 %C A038549 Note that an upper bound on a(n) is 3*2^(n-1), which is attained at n = 4 and the odd primes in A005382 (primes p such that 2p-1 is also prime). - _T. D. Noe_, Jul 13 2013 %H A038549 Paul Tek, <a href="/A038549/b038549.txt">Table of n, a(n) for n = 1..1000</a> %H A038549 T. Verhoeff, <a href="https://cs.uwaterloo.ca/journals/JIS/trapzoid.html">Rectangular and Trapezoidal Arrangements</a>, J. Integer Sequences, Vol. 2, 1999, #99.1.6. %F A038549 a(n) = min(A005179(2n-1), A005179(2n)). %t A038549 nn = 18; t = Table[0, {nn}]; found = 0; n = 0; While[found < nn, n++; c = Length[Select[Divisors[n], # <= Sqrt[n] &]]; If[c > 0 && c <= nn && t[[c]] == 0, t[[c]] = n; found++]]; t (* _T. D. Noe_, Jul 10 2013 *) %o A038549 (Haskell) %o A038549 import Data.List (elemIndex) %o A038549 import Data.Maybe (fromJust) %o A038549 a038549 = (+ 1) . fromJust . (`elemIndex` a038548_list) %o A038549 -- _Reinhard Zumkeller_, Dec 26 2012 %Y A038549 Cf. A038548 (records), A072671, A004778, A086921. %Y A038549 Cf. A227068 (similar, but with limit < sqrt). %K A038549 nonn %O A038549 1,2 %A A038549 _Tom Verhoeff_ %E A038549 More terms from _David W. Wilson_.