cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038564 Numbers whose list of divisors includes each digit 1-9 equally often.

This page as a plain text file.
%I A038564 #16 Dec 20 2022 14:38:38
%S A038564 54023,54203,55868,500407,556744,769858,1187666,1566986,1875098,
%T A038564 3545924,5594156,5733406,5849014,5908304,6100594,6712006,7605544,
%U A038564 9106868,9580654,10909864,23456789,23458679,23459687,23465789,23465987,23469587,23475869,23478569,23489657
%N A038564 Numbers whose list of divisors includes each digit 1-9 equally often.
%H A038564 Michael S. Branicky, <a href="/A038564/b038564.txt">Table of n, a(n) for n = 1..10000</a>
%e A038564 55868 is a term because, among its divisors (which are 1, 2, 4, 13967, 27934, 55868), each digit from 1 through 9 occurs exactly twice.
%t A038564 ld9Q[n_]:=Module[{d=DeleteCases[Sort[Flatten[IntegerDigits/@Divisors[ n]]],0]},Length[ Intersection[ d,Range[ 9]]] == 9&&Length[Union[ Length/@Split[ d]]]==1]; Select[ Range[ 235*10^5],ld9Q] (* _Harvey P. Dale_, Dec 20 2022 *)
%o A038564 (Python)
%o A038564 from sympy import divisors
%o A038564 from collections import Counter
%o A038564 def ok(n):
%o A038564     c = Counter()
%o A038564     for d in divisors(n, generator=True): c.update(str(d))
%o A038564     return len(set([c[i] for i in "123456789"])) == 1
%o A038564 print([k for k in range(1, 60000) if ok(k)]) # _Michael S. Branicky_, Nov 13 2022
%Y A038564 Cf. A038565.
%K A038564 nonn,base,easy
%O A038564 1,1
%A A038564 _Naohiro Nomoto_
%E A038564 More terms from _Sascha Kurz_, Oct 18 2001
%E A038564 a(26) and beyond from _Michael S. Branicky_, Nov 13 2022