This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038565 #17 Nov 14 2022 00:36:56 %S A038565 1,1,2,1,3,3,3,3,3,5,5,3,3,4,3,3,3,5,3,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %T A038565 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A038565 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A038565 Number of times digits are repeated in A038564. %C A038565 Next term > 1 is a(221) = 7, corresponding to A038564(221) = 26300344. %H A038565 Michael S. Branicky, <a href="/A038565/b038565.txt">Table of n, a(n) for n = 1..10000</a> %e A038565 54023 [ 1(1),2(1),3(1),4(1),5(1),6(1),7(1),8(1),9(1) ], %e A038565 54203 [ 1(1),2(1),3(1),4(1),5(1),6(1),7(1),8(1),9(1) ], %e A038565 55868 [ 1(2),2(2),3(2),4(2),5(2),6(2),7(2),8(2),9(2) ], %e A038565 500407 [ 1(1),2(1),3(1),4(1),5(1),6(1),7(1),8(1),9(1) ]. %o A038565 (Python) %o A038565 from sympy import divisors %o A038565 from collections import Counter %o A038565 def okval(n): %o A038565 c = Counter() %o A038565 for d in divisors(n, generator=True): c.update(str(d)) %o A038565 return c["1"] if len(set([c[i] for i in "123456789"])) == 1 else False %o A038565 print([okval(k) for k in range(1, 60000) if okval(k)]) # _Michael S. Branicky_, Nov 13 2022 %Y A038565 Cf. A038564. %K A038565 nonn,base,easy %O A038565 1,3 %A A038565 _Naohiro Nomoto_ %E A038565 More terms from _Sascha Kurz_, Oct 18 2001