cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038577 Number of self-avoiding walks of length n from origin in strip Z X {0,1}.

Original entry on oeis.org

1, 3, 6, 12, 20, 36, 58, 100, 160, 268, 430, 708, 1140, 1860, 3002, 4876, 7880, 12772, 20654, 33444, 54100, 87564, 141666, 229252, 370920, 600196, 971118, 1571340, 2542460, 4113828, 6656290, 10770148, 17426440, 28196620, 45623062, 73819716, 119442780
Offset: 0

Views

Author

Keywords

Comments

For n >= 2, a(n) coincides with A110935. -Eric Rowland, Mar 09 2009

References

  • J. Labelle, Self-avoiding walks and polyominoes in strips, Bull. ICA, 23 (1998), 88-98.

Programs

  • Maple
    f := n->if n mod 2 = 0 then 8*fibonacci(n)-n else 8*fibonacci(n)-4; fi;
  • Mathematica
    Join[{1, 3}, LinearRecurrence[{1, 3, -2, -3, 1, 1}, {6, 12, 20, 36, 58, 100}, 40]] (* Jean-François Alcover, Jan 08 2019 *)
  • PARI
    Vec((1 + 2*x - x^3 - x^4 + x^7) / ((1 - x)^2*(1 + x)^2*(1 - x - x^2)) + O(x^40)) \\ Colin Barker, Nov 18 2017

Formula

G.f.: (1 + 2*x - x^3 - x^4 + x^7) / ((1 - x)^2*(1 + x)^2*(1 - x - x^2)).
From Colin Barker, Nov 18 2017: (Start)
a(n) = -2 + 2*(-1)^n - (8*(1/2-sqrt(5)/2)^n)/sqrt(5) + (8*(1/2+sqrt(5)/2)^n)/sqrt(5) - (1/2)*(1+(-1)^n)*n for n > 1.
a(n) = a(n-1) + 3*a(n-2) - 2*a(n-3) - 3*a(n-4) + a(n-5) + a(n-6) for n > 5.
(End)