cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038620 Growth function (or coordination sequence) of the infinite cubic graph corresponding to the srs net (a(n) = number of nodes at distance n from a fixed node).

This page as a plain text file.
%I A038620 #67 Mar 21 2025 13:25:28
%S A038620 1,3,6,12,24,35,48,69,86,108,138,161,192,231,260,300,348,383,432,489,
%T A038620 530,588,654,701,768,843,896,972,1056,1115,1200,1293,1358,1452,1554,
%U A038620 1625,1728,1839,1916,2028,2148,2231,2352,2481,2570,2700,2838,2933,3072,3219
%N A038620 Growth function (or coordination sequence) of the infinite cubic graph corresponding to the srs net (a(n) = number of nodes at distance n from a fixed node).
%C A038620 Other names for this structure are triamond, the Laves graph, K_4 lattice, (10,3)-a, or the srs net. A290705 is the theta series of the most symmetric embedding of this graph into space. - _Andrey Zabolotskiy_, Oct 05 2017
%C A038620 Sunada mentions several other contexts in chemistry and physics where this net occurs. - _N. J. A. Sloane_, Sep 25 2018
%C A038620 Also, coordination sequence of the hydrogen peroxide lattice. - _Sean A. Irvine_, May 09 2021
%D A038620 A. F. Wells, Three-dimensional Nets and Polyhedra, Wiley, 1977. See the net (10,3)-a.
%H A038620 Vincenzo Librandi, <a href="/A038620/b038620.txt">Table of n, a(n) for n = 0..1000</a>
%H A038620 Thomas Bewley, Paul Belitz, and Joseph Cessna, <a href="http://robotics.ucsd.edu/pubs/BBC_Part1.pdf">New horizons in sphere packing theory, part I: fundamental concepts & constructions, from dense to rare</a>. See p. 18, row srs
%H A038620 J. K. Haugland, <a href="https://doi.org/10.1002/jgt.10071">Classification of certain subgraphs of the 3-dimensional grid</a>, J. Graph Theory, 42 (2003), 34-60.
%H A038620 J. K. Haugland, <a href="http://www.neutreeko.net/images/maths/gridgraph3.png">Illustration</a>
%H A038620 J. K. Haugland, <a href="/A038620/a038620.png">Illustration</a> [Cached copy, with permission] This illustration presents a different (less symmetric) embedding of the srs net into space.
%H A038620 M. O'Keeffe, <a href="https://doi.org/10.1524/zkri.1998.213.3.135">Coordination sequences for hyperbolic tilings</a>, Zeitschrift für Kristallographie, 213 (1998), 135-140 (see next-to-last table, row 10_5.10_5.10_5).
%H A038620 Reticular Chemistry Structure Resource, <a href="http://rcsr.net/nets/srs">srs</a>.
%H A038620 Toshikazu Sunada, <a href="https://www.ams.org/notices/200802/tx080200208p.pdf">Crystals that nature might miss creating</a>, Notices Amer. Math. Soc. 55 (No. 2, 2008), 208-215.
%H A038620 Toshikazu Sunada, <a href="https://www.ams.org/journals/notices/200803/tx080300342p.pdf#page=2">Correction to "Crystals That Nature Might Miss Creating"</a>, Notices Amer. Math. Soc., 55 (No. 3, 2008), page 343.
%H A038620 Toshikazu Sunada, <a href="/A038620/a038620_1.png">Correction to "Crystals That Nature Might Miss Creating"</a>, Notices Amer. Math. Soc., 55 (No. 3, 2008), page 343. [Annotated scanned copy]
%H A038620 Wikipedia, <a href="https://en.wikipedia.org/wiki/Laves_graph">Laves graph</a>
%H A038620 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2,-2,0,-1,1).
%F A038620 a(0)=1, a(1)=3, a(2)=6; for n>=3: if n == 0 (mod 3), a(n) = 4n^2/3; if n == 1 (mod 3), a(n) = (4n^2 + n + 4)/3; if n == 2 (mod 3), a(n) = (4n^2 - n + 10)/3.
%F A038620 G.f.: -(x+1)*(2*x^8-4*x^7+3*x^6-x^5+6*x^4+2*x^3+2*x^2+x+1) / ((x-1)^3*(x^2+x+1)^2). - _Colin Barker_, May 10 2013
%t A038620 CoefficientList[Series[-(x + 1) (2 x^8 - 4 x^7 + 3 x^6 - x^5 + 6 x^4 + 2 x^3 + 2 x^2 + x + 1)/((x - 1)^3 (x^2 + x + 1)^2), {x, 0, 50}], x] (* _Vincenzo Librandi_, Oct 22 2013 *)
%t A038620 LinearRecurrence[{1,0,2,-2,0,-1,1},{1,3,6,12,24,35,48,69,86,108},50] (* _Harvey P. Dale_, Sep 02 2017 *)
%Y A038620 Cf. A038621 (partial sums), A290705 (theta series).
%K A038620 nonn,easy
%O A038620 0,2
%A A038620 _Jan Kristian Haugland_
%E A038620 Links corrected by _Jan Kristian Haugland_, Mar 01 2009
%E A038620 More terms from _Colin Barker_, May 10 2013