cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038665 Convolution of A007054 (super ballot numbers) with A000984 (central binomial coefficients).

This page as a plain text file.
%I A038665 #30 May 16 2022 02:49:04
%S A038665 3,8,25,84,294,1056,3861,14300,53482,201552,764218,2912168,11143500,
%T A038665 42791040,164812365,636438060,2463251010,9552774000,37112526990,
%U A038665 144410649240,562724141460,2195581527360,8576490341250,33537507830424
%N A038665 Convolution of A007054 (super ballot numbers) with A000984 (central binomial coefficients).
%H A038665 Vincenzo Librandi, <a href="/A038665/b038665.txt">Table of n, a(n) for n = 0..200</a>
%H A038665 Guo-Niu Han, <a href="/A196265/a196265.pdf">Enumeration of Standard Puzzles</a>, 2011. [Cached copy]
%H A038665 Guo-Niu Han, <a href="https://arxiv.org/abs/2006.14070">Enumeration of Standard Puzzles</a>, arXiv:2006.14070 [math.CO], 2020.
%F A038665 a(n) = (n+3)*C(n+1) with C(n) the Catalan numbers A000108.
%F A038665 G.f.: c(x)*(4 - c(x))/sqrt(1 - 4*x) with c(x) the g.f. for the Catalan numbers.
%F A038665 From _Amiram Eldar_, May 16 2022: (Start)
%F A038665 Sum_{n>=0} 1/a(n) = 41/6 - 64*Pi/(9*sqrt(3)) + 2*Pi^2/3.
%F A038665 Sum_{n>=0} (-1)^n/a(n) = 57/10 - 256*log(phi)/(5*sqrt(5)) + 24*log(phi)^2, where phi is the golden ratio (A001622). (End)
%p A038665 seq((n+3)*binomial(2*n+2, n+1)/(n+2), n=0..24); # _Zerinvary Lajos_, Dec 08 2008
%t A038665 Table[(n + 3) (CatalanNumber[n + 1]), {n, 0, 30}] (* _Vincenzo Librandi_, Sep 11 2016 *)
%o A038665 (Magma) [(n+3)*Catalan(n+1): n in [0..30]]; // _Vincenzo Librandi_, Sep 11 2016
%Y A038665 Cf. A000108, A000777, A000984, A001622, A007054.
%K A038665 easy,nonn
%O A038665 0,1
%A A038665 _Wolfdieter Lang_