cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038699 Riesel problem: Smallest prime of form n*2^m-1, m >= 0, or 0 if no such prime exists.

This page as a plain text file.
%I A038699 #43 Sep 21 2024 12:41:12
%S A038699 3,3,2,3,19,5,13,7,17,19,43,11,103,13,29,31,67,17,37,19,41,43,367,23,
%T A038699 199,103,53,223,463,29,61,31,131,67,139,71,73,37,311,79,163,41,5503,
%U A038699 43,89,367,751,47,97,199,101,103,211,53,109,223,113,463,241663,59,487,61
%N A038699 Riesel problem: Smallest prime of form n*2^m-1, m >= 0, or 0 if no such prime exists.
%H A038699 Reinhard Zumkeller, <a href="/A038699/b038699.txt">Table of n, a(n) for n = 1..650</a>
%H A038699 Hans Riesel, <a href="/A076337/a076337.pdf">Some large prime numbers</a>. Translated from the Swedish original (NĂ¥gra stora primtal, Elementa 39 (1956), pp. 258-260) by Lars Blomberg.
%t A038699 getm[n_]:=Module[{m=0},While[!PrimeQ[n 2^m-1],m++];n 2^m-1]; Array[getm,80]  (* _Harvey P. Dale_, Apr 24 2011 *)
%o A038699 (Haskell)
%o A038699 a038699 = until ((== 1) . a010051) ((+ 1) . (* 2)) . (subtract 1)
%o A038699 -- _Reinhard Zumkeller_, Mar 05 2012
%Y A038699 Primes arising in A040081 (or 0 if no prime exists).
%Y A038699 Main sequences for Riesel problem: A038699, A040081, A046069, A050412, A052333, A076337, A101036, A108129.
%Y A038699 Cf. A050921, A010051, A000079.
%K A038699 nonn,nice
%O A038699 1,1
%A A038699 _N. J. A. Sloane_, Dec 30 1999
%E A038699 More terms from _Henry Bottomley_, Apr 24 2001