This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038727 #25 Jul 22 2025 05:52:06 %S A038727 0,0,80,1280,14320,148480,1459840,13835680,127784640,1158460000, %T A038727 10342876480,91312921760,798077066720,6922857067840 %N A038727 Configurations of linear chains in a 5-dimensional hypercubic lattice. %C A038727 In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=1 (and d=5). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (For d=2, we have C_{n,m=1} = A033155(n); for d=3, we have C_{n, m=1} = A047057(n); for d=4, we have C_{n,m=1} = A042949(n); and for d=6, we have C_{n,m=1} = A038745(n). These values appear in Table 1, pp. 1088-1090, of Nemirovsky et al. (1992).) - _Petros Hadjicostas_, Jan 06 2019 %H A038727 A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, <a href="http://dx.doi.org/10.1007/BF01049010">Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers</a>, J. Statist. Phys., 67 (1992), 1083-1108. %Y A038727 Cf. A033155, A038745, A042949, A047057. %K A038727 nonn,more %O A038727 1,3 %A A038727 _N. J. A. Sloane_, May 02 2000 %E A038727 Name was edited by _Petros Hadjicostas_, Jan 06 2019 %E A038727 Terms a(10) and a(11) were copied from Table I, p. 1090, in Nemirovsky et al. (1992) by _Petros Hadjicostas_, Jan 06 2019 %E A038727 a(12)-a(14) from _Sean A. Irvine_, Jan 31 2021