cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038763 Triangular matrix arising in enumeration of catafusenes, read by rows.

This page as a plain text file.
%I A038763 #37 Dec 30 2023 23:50:11
%S A038763 1,1,1,1,4,3,1,7,15,9,1,10,36,54,27,1,13,66,162,189,81,1,16,105,360,
%T A038763 675,648,243,1,19,153,675,1755,2673,2187,729,1,22,210,1134,3780,7938,
%U A038763 10206,7290,2187,1,25,276,1764,7182,19278,34020,37908,24057,6561,1,28,351,2592,12474,40824,91854,139968,137781,78732,19683
%N A038763 Triangular matrix arising in enumeration of catafusenes, read by rows.
%C A038763 Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Aug 10 2005
%C A038763 Triangle read by rows, n-th row = X^(n-1) * [1, 1, 0, 0, 0, ...] where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (3,3,3,...) in the subdiagonal; given row 0 = 1. - _Gary W. Adamson_, Jul 19 2008
%C A038763 Fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(2x+1)^n; see A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. - _Clark Kimberling_, Aug 04 2011
%H A038763 G. C. Greubel, <a href="/A038763/b038763.txt">Rows n = 0..50 of the triangle, flattened</a>
%H A038763 S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, <a href="https://hrcak.srce.hr/177109">Unbranched catacondensed polygonal systems containing hexagons and tetragons</a>, Croatica Chem. Acta, 69 (1996), 757-774.
%F A038763 T(n, 0)=1; T(1, 1)=1; T(n, k)=0 for k>n; T(n, k) = T(n-1, k-1)*3 + T(n-1, k) for n >= 2.
%F A038763 Sum_{k=0..n} T(n,k) = A081294(n). - _Philippe Deléham_, Sep 22 2006
%F A038763 T(n, k) = A136158(n, n-k). - _Philippe Deléham_, Dec 17 2007
%F A038763 G.f.: (1-2*x*y)/(1-(3*y+1)*x). - _R. J. Mathar_, Aug 11 2015
%F A038763 From _G. C. Greubel_, Dec 27 2023: (Start)
%F A038763 T(n, 0) = A000012(n).
%F A038763 T(n, 1) = A016777(n-1).
%F A038763 T(n, 2) = A062741(n-1).
%F A038763 T(n, 3) = 9*A002411(n-2).
%F A038763 T(n, 4) = 27*A001296(n-3).
%F A038763 T(n, 5) = 81*A051836(n-4).
%F A038763 T(n, n) = A133494(n).
%F A038763 T(n, n-1) = A006234(n+2).
%F A038763 T(n, n-2) = A080420(n-2).
%F A038763 T(n, n-3) = A080421(n-3).
%F A038763 T(n, n-4) = A080422(n-4).
%F A038763 T(n, n-5) = A080423(n-5).
%F A038763 T(2*n, n) = 4*A098399(n-1) + (2/3)*[n=0].
%F A038763 Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
%F A038763 Sum_{k=0..floor(n/2)} T(n-k, k) = A006138(n-1) + (2/3)*[n=0].
%F A038763 Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A110523(n-1) + (4/3)*[n=0]. (End)
%e A038763 Triangle begins:
%e A038763   1;
%e A038763   1,  1;
%e A038763   1,  4,   3;
%e A038763   1,  7,  15,   9;
%e A038763   1, 10,  36,  54,   27;
%e A038763   1, 13,  66, 162,  189,   81;
%e A038763   1, 16, 105, 360,  675,  648,  243;
%e A038763   1, 19, 153, 675, 1755, 2673, 2187, 729;
%t A038763 A038763[n_,k_]:= If[n==0, 1, 3^(k-1)*(3*n-2*k)*Binomial[n,k]/n];
%t A038763 Table[A038763[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Dec 27 2023 *)
%o A038763 (PARI) T(n,k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); T(n-1,k) + 3*T(n-1,k-1);
%o A038763 tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ _Michel Marcus_, Jul 25 2023
%o A038763 (Magma)
%o A038763 A038763:= func< n,k | n eq 0 select 1 else 3^(k-1)*(3*n-2*k)*Binomial(n,k)/n >;
%o A038763 [A038763(n, k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Dec 27 2023
%o A038763 (SageMath)
%o A038763 def A038763(n,k): return 1 if (n==0) else 3^(k-1)*(3*n-2*k)*binomial(n,k)/n
%o A038763 flatten([[A038763(n, k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Dec 27 2023
%Y A038763 Cf. A000007, A000012, A001296, A006138, A006234, A016777, A024462.
%Y A038763 Cf. A051836, A062741, A080420, A080421, A080422, A080423, A081294.
%Y A038763 Cf. A084938, A098399, A110523, A133494, A136158, A193722.
%K A038763 tabl,nonn,easy
%O A038763 0,5
%A A038763 _N. J. A. Sloane_, May 03 2000
%E A038763 More terms from _Michel Marcus_, Jul 25 2023