cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038788 Non-Cayley-isomorphic circulant self-complementary directed p^2-graphs, indexed by odd primes p.

This page as a plain text file.
%I A038788 #12 Feb 14 2021 14:34:22
%S A038788 1,4,4,16,64,400,900,8836,355216,1201216,53523856,690217984,
%T A038788 2494003600,33255899044,1666350520384,85680866908816,320296595636224,
%U A038788 16939175556745744,240937075998869056,910964509740273664,49676441991516395584,719170624451273114176
%N A038788 Non-Cayley-isomorphic circulant self-complementary directed p^2-graphs, indexed by odd primes p.
%D A038788 V. A. Liskovets and R. Poeschel, Non-Cayley-isomorphic self-complementary circulant graphs, J. Graph Th., 34, 2000, 128-141.
%H A038788 M. Klin, V. A. Liskovets and R. Poeschel, <a href="http://www.mat.univie.ac.at/~slc/wpapers/s36klp.html">Analytical enumeration of circulant graphs with prime-squared vertices</a>, Sem. Lotharingien de Combin., B36d, 1996, 36 pages.
%F A038788 a(p^2) = A049309(p)^2.
%F A038788 a(p^2) = A054246(p^2) for p=4k-1.
%F A038788 a(p^2) = ( (1/(p-1)) * Sum_{r|p-1 and r even} phi(r) * 2^((p-1)/r) )^2. - _Sean A. Irvine_, Feb 14 2021
%Y A038788 Cf. A038785, A038787.
%K A038788 nonn,easy
%O A038788 1,2
%A A038788 _N. J. A. Sloane_, May 04 2000
%E A038788 More terms from _Valery A. Liskovets_, May 09 2001
%E A038788 More terms and offset corrected by _Sean A. Irvine_, Feb 14 2021