This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038843 #57 Feb 16 2025 08:32:38 %S A038843 2,9,165,238,1640,4320,10250,10824,13500,23760,58500,66912,425880, %T A038843 520128,873180,931392,1899744,2129400,2253888,3276000,4580064,4668300, %U A038843 13722800,15459840,40360320,201801600,439021440,3809332800,15359485680,794436968640,1407035080704 %N A038843 Unitary superperfect numbers: numbers n such that usigma(usigma(n)) = 2*n, where usigma(n) is the sum of unitary divisors of n (A034448). %C A038843 May be called (2,2)-unitary perfect numbers, analogous to (k,l)-perfect numbers. %C A038843 Sitaramaiah and Subbarao found the first 22 terms. Also in the sequence is 12189313382400. - _Amiram Eldar_, Feb 27 2019 %H A038843 V. Sitaramaiah and M. V. Subbarao, <a href="http://www.math.ualberta.ca/~subbarao/documents/Sitaramaiah_Subbarao1998.pdf">On the equation sigma*(sigma*(n)) = 2n</a>, Utilitas Mathematica, Vol. 53 (1998), pp. 101-124. %H A038843 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SuperUnitaryPerfectNumber.html">Super Unitary Perfect Number.</a> %H A038843 Tomohiro Yamada, <a href="http://mathematica-pannonica.ttk.pte.hu/index_elemei/mp19-1/MP19-1(2008)pp37-47.pdf">Unitary super perfect numbers</a>, Mathematica Pannonica, Volume 19, No. 1, 2008, pp. 37-47; <a href="https://arxiv.org/abs/0802.4377">Preprint</a>, arXiv:0802.4377 [math.NT], 2008. Proves that 9 and 165 are the only odd terms of this sequence. %H A038843 Tomohiro Yamada, <a href="http://ac.inf.elte.hu/Vol_048_2018/247_48.pdf">2 and 9 are the only biunitary superperfect numbers</a>, Annales Univ. Sci. Budapest., Sec. Comp., Volume 48 (2018). Mentions this sequence. %t A038843 usigma[n_] := Times @@ (Apply[ Power, FactorInteger[n], {1}] + 1); n = 1; A038843 = {}; While[n < 10^7, If[ usigma[ usigma[n] ] == 2n, Print[n]; AppendTo[ A038843, n] ]; n++]; A038843 (* _Jean-François Alcover_, Dec 07 2011 *) %o A038843 (PARI) {usigma(n,s=1,fac,i)= fac=factor(n); for(i=1,matsize(fac)[1], s=s*(1+fac[i,1]^fac[i,2]) ); return(s);} %o A038843 for(n=1,10^7, if(usigma(usigma(n))==2*n, print1(n, ", "))) %Y A038843 Cf. A034448, A019279. %Y A038843 Cf. A064012 (usigma(usigma(n)) = 3n). %K A038843 nonn,nice %O A038843 1,1 %A A038843 _Yasutoshi Kohmoto_ %E A038843 Corrected by _Jason Earls_, Aug 25 2001 %E A038843 More terms from _Jud McCranie_, Oct 28 2001 %E A038843 Offset corrected and a(28) from _Donovan Johnson_, Jul 23 2012 %E A038843 Name edited and a(29) from _Amiram Eldar_, Feb 27 2019 %E A038843 a(30)-a(31) from _Giovanni Resta_, Mar 08 2019