A038860 Numbers ending with '5' that are the difference of two positive cubes.
215, 335, 485, 665, 875, 1115, 1385, 1685, 2015, 2375, 2765, 3185, 3635, 4095, 4115, 4625, 4905, 5165, 5735, 5805, 6335, 6795, 6965, 7625, 7875, 8315, 9035, 9045, 9785, 10305, 10565, 11375, 11655, 12215, 13085, 13095, 13985, 14625, 14915, 15875
Offset: 1
Programs
-
PARI
A038860(Nmax=20000,a=[]) = { local(t, j5); forstep( j=1,Nmax^(1/3)/5,2, j5=5*j; for(k=1, sqrt((Nmax/j5-j5^2-3*j5)/3), if(Nmax
M. F. Hasler, Jun 07 2007
Formula
A number is in this sequence iff it is of the form (k+10j-5)^3-k^3, where k,j are any positive integers, since (k+d)^3 - k^3 = d(3(k+d/2)^2+d^2/4) == 5 (mod 10) iff d is odd and d == 0 (mod 5) (cf. A038853) - M. F. Hasler, Jun 07 2007
Extensions
Corrected by M. F. Hasler, Jun 07 2007
Comments