A038883 Odd primes p such that 13 is a square mod p.
3, 13, 17, 23, 29, 43, 53, 61, 79, 101, 103, 107, 113, 127, 131, 139, 157, 173, 179, 181, 191, 199, 211, 233, 251, 257, 263, 269, 277, 283, 311, 313, 337, 347, 367, 373, 389, 419, 433, 439, 443, 467, 491, 503, 521, 523, 547, 563, 569, 571, 599, 601, 607, 641
Offset: 1
Keywords
Examples
13 == 1 (mod 3) and 1 is a square, so 3 is on the list. 101 is prime and congruent to 7^2 = 49 == 10 (mod 13), so 101 is on the list.
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Peter Luschny, Binary Quadratic Forms
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (primes p such that d=13 is a square mod p). A038889 (d=17). A141111, A141112 (d=65).
Cf. A296937.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Programs
-
Mathematica
Select[ Prime@ Range@ 118, JacobiSymbol[ #, 13] > -1 &] (* Robert G. Wilson v, May 16 2008 *) Select[Flatten[Table[13n + {1, 3, 4, 9, 10, 12}, {n, 50}]], PrimeQ[#] &] (* Alonso del Arte, Sep 16 2012 *)
-
PARI
forprime(p=3,1e3,if(issquare(Mod(13,p)),print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
-
PARI
select( {is_A038883(n)=bittest(5659,n%13)&&isprime(n)}, [0..666]) \\ M. F. Hasler, Feb 17 2022
-
Sage
# uses[binaryQF] # The function binaryQF is defined in the link 'Binary Quadratic Forms'. Q = binaryQF([1, 3, -1]) print(Q.represented_positives(641, 'prime')) # Peter Luschny, Sep 20 2018
Formula
Extensions
Edited by N. J. A. Sloane, Apr 27 2008, Jul 28 2008
Comments