cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038883 Odd primes p such that 13 is a square mod p.

Original entry on oeis.org

3, 13, 17, 23, 29, 43, 53, 61, 79, 101, 103, 107, 113, 127, 131, 139, 157, 173, 179, 181, 191, 199, 211, 233, 251, 257, 263, 269, 277, 283, 311, 313, 337, 347, 367, 373, 389, 419, 433, 439, 443, 467, 491, 503, 521, 523, 547, 563, 569, 571, 599, 601, 607, 641
Offset: 1

Views

Author

Keywords

Comments

Equivalently, by quadratic reciprocity (since 13 == 1 (mod 4)), primes p which are squares mod 13.
The squares mod 13 are 0, 1, 4, 9, 3, 12 and 10.
Also primes of the form x^2 + 3*x*y - y^2. Discriminant = 13. Class = 1. This was originally a separate entry, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 06 2008. R. J. Mathar proved that this coincides with the present sequence, Jul 22 2008
Primes p such that x^2 + x = 3 has a solution mod p (the solutions over the reals are (-1+-sqrt(13))/2). - Joerg Arndt, Jul 27 2011

Examples

			13 == 1 (mod 3) and 1 is a square, so 3 is on the list.
101 is prime and congruent to 7^2 = 49 == 10 (mod 13), so 101 is on the list.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (primes p such that d=13 is a square mod p). A038889 (d=17). A141111, A141112 (d=65).
Cf. A296937.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    Select[ Prime@ Range@ 118, JacobiSymbol[ #, 13] > -1 &] (* Robert G. Wilson v, May 16 2008 *)
    Select[Flatten[Table[13n + {1, 3, 4, 9, 10, 12}, {n, 50}]], PrimeQ[#] &] (* Alonso del Arte, Sep 16 2012 *)
  • PARI
    forprime(p=3,1e3,if(issquare(Mod(13,p)),print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    select( {is_A038883(n)=bittest(5659,n%13)&&isprime(n)}, [0..666]) \\ M. F. Hasler, Feb 17 2022
    
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([1, 3, -1])
    print(Q.represented_positives(641, 'prime')) # Peter Luschny, Sep 20 2018

Formula

A000040 \ A120330 U {13}: Complement of A120330 in the primes, and 13. - M. F. Hasler, Feb 17 2022

Extensions

Edited by N. J. A. Sloane, Apr 27 2008, Jul 28 2008