cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A141189 Primes of the form x^2+7*x*y-y^2 (as well as of the form 7*x^2+9*x*y+y^2).

Original entry on oeis.org

7, 11, 13, 17, 29, 37, 43, 47, 53, 59, 89, 97, 107, 113, 131, 149, 163, 197, 199, 211, 223, 227, 229, 241, 269, 271, 281, 293, 307, 311, 317, 331, 347, 367, 409, 431, 433, 439, 449, 461, 467, 487, 521, 523, 541, 547, 577, 587, 593, 599, 607, 619, 643, 647, 653
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Discriminant = 53. Class = 1. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.
A subsequence of (and may possibly coincide with) A038931. - R. J. Mathar, Jul 22 2008

Examples

			a(5) = 29 because we can write 29 = 3^2+7*3*1-1^2 (or 29 = 7*1^2+9*1*2+2^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A038931, A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).
Primes in A243191.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    Reap[For[p = 2, p < 1000, p = NextPrime[p], If[FindInstance[p == x^2 + 7*x*y - y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)
Showing 1-1 of 1 results.