cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A373751 Array read by ascending antidiagonals: p is a term of row A(n) if and only if p is a prime and p is a quadratic residue modulo prime(n).

Original entry on oeis.org

2, 3, 3, 5, 7, 5, 2, 11, 13, 7, 3, 7, 19, 19, 11, 3, 5, 11, 29, 31, 13, 2, 13, 11, 23, 31, 37, 17, 5, 13, 17, 23, 29, 41, 43, 19, 2, 7, 17, 23, 31, 37, 59, 61, 23, 5, 3, 11, 19, 29, 37, 43, 61, 67, 29, 2, 7, 13, 17, 43, 43, 47, 53, 71, 73, 31, 3, 5, 13, 23, 19, 47, 53, 53, 67, 79, 79, 37
Offset: 1

Views

Author

Peter Luschny, Jun 28 2024

Keywords

Comments

p is a term of A(n) <=> p is prime and there exists an integer q such that q^2 is congruent to p modulo prime(n).

Examples

			Note that the cross-references are hints, not assertions about identity.
.
[ n] [ p]
[ 1] [ 2] [ 2,  3,  5,  7, 11, 13, 17, 19, 23, 29, ...  A000040
[ 2] [ 3] [ 3,  7, 13, 19, 31, 37, 43, 61, 67, 73, ...  A007645
[ 3] [ 5] [ 5, 11, 19, 29, 31, 41, 59, 61, 71, 79, ...  A038872
[ 4] [ 7] [ 2,  7, 11, 23, 29, 37, 43, 53, 67, 71, ...  A045373
[ 5] [11] [ 3,  5, 11, 23, 31, 37, 47, 53, 59, 67, ...  A056874
[ 6] [13] [ 3, 13, 17, 23, 29, 43, 53, 61, 79, 101, ..  A038883
[ 7] [17] [ 2, 13, 17, 19, 43, 47, 53, 59, 67, 83, ...  A038889
[ 8] [19] [ 5,  7, 11, 17, 19, 23, 43, 47, 61, 73, ...  A106863
[ 9] [23] [ 2,  3, 13, 23, 29, 31, 41, 47, 59, 71, ...  A296932
[10] [29] [ 5,  7, 13, 23, 29, 53, 59, 67, 71, 83, ...  A038901
[11] [31] [ 2,  5,  7, 19, 31, 41, 47, 59, 67, 71, ...  A267481
[12] [37] [ 3,  7, 11, 37, 41, 47, 53, 67, 71, 73, ...  A038913
[13] [41] [ 2,  5, 23, 31, 37, 41, 43, 59, 61, 73, ...  A038919
[14] [43] [11, 13, 17, 23, 31, 41, 43, 47, 53, 59, ...  A106891
[15] [47] [ 2,  3,  7, 17, 37, 47, 53, 59, 61, 71, ...  A267601
[16] [53] [ 7, 11, 13, 17, 29, 37, 43, 47, 53, 59, ...  A038901
[17] [59] [ 3,  5,  7, 17, 19, 29, 41, 53, 59, 71, ...  A374156
[18] [61] [ 3,  5, 13, 19, 41, 47, 61, 73, 83, 97, ...  A038941
[19] [67] [17, 19, 23, 29, 37, 47, 59, 67, 71, 73, ...  A106933
[20] [71] [ 2,  3,  5, 19, 29, 37, 43, 71, 73, 79, ...
[21] [73] [ 2,  3, 19, 23, 37, 41, 61, 67, 71, 73, ...  A038957
[22] [79] [ 2,  5, 11, 13, 19, 23, 31, 67, 73, 79, ...
[23] [83] [ 3,  7, 11, 17, 23, 29, 31, 37, 41, 59, ...
[24] [89] [ 2,  5, 11, 17, 47, 53, 67, 71, 73, 79, ...  A038977
[25] [97] [ 2,  3, 11, 31, 43, 47, 53, 61, 73, 79, ...  A038987
.
Prime(n) is a term of row n because for all n >= 1, n is a quadratic residue mod n.
		

Crossrefs

Family: A217831 (Euclid's triangle), A372726 (Legendre's triangle), A372877 (Jacobi's triangle), A372728 (Kronecker's triangle), A373223 (Gauss' triangle), A373748 (quadratic residue/nonresidue modulo n).
Cf. A374155 (column 1), A373748.

Programs

  • Maple
    A := proc(n, len) local c, L, a; a := 2; c := 0; L := NULL; while c < len do if NumberTheory:-QuadraticResidue(a, n) = 1 and isprime(a) then L := L,a; c := c + 1 fi; a := a + 1 od; [L] end: seq(print(A(ithprime(n), 10)), n = 1..25);
  • Mathematica
    f[m_, n_] := Block[{p = Prime@ m}, Union[ Join[{p}, Select[ Prime@ Range@ 22, JacobiSymbol[#, If[m > 1, p, 1]] == 1 &]]]][[n]]; Table[f[n, m -n +1], {m, 12}, {n, m, 1, -1}]
    (* To read the array by descending antidiagonals, just exchange the first argument with the second in the function "f" called by the "Table"; i.e., Table[ f[m -n +1, n], {m, 12}, {n, m, 1, -1}] *)
  • PARI
    A373751_row(n, LIM=99)={ my(q=prime(n)); [p | p <- primes([1,LIM]), issquare( Mod(p, q))] } \\ M. F. Hasler, Jun 29 2024
  • SageMath
    # The function 'is_quadratic_residue' is defined in A373748.
    def A373751_row(n, len):
        return [a for a in range(len) if is_quadratic_residue(a, n) and is_prime(a)]
    for p in prime_range(99): print([p], A373751_row(p, 100))
    

A141215 Primes of the form 3*x^2+5*x*y-3*y^2 (as well as 5*x^2+9*x*y+y^2).

Original entry on oeis.org

3, 5, 13, 19, 41, 47, 61, 73, 83, 97, 103, 107, 109, 113, 127, 131, 137, 149, 163, 167, 179, 197, 199, 229, 239, 241, 257, 263, 269, 271, 283, 293, 317, 347, 353, 367, 379, 431, 439, 443, 449, 461, 463, 479, 487, 491, 503, 563, 569, 571, 601, 607, 613, 619
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 14 2008

Keywords

Comments

Discriminant = 61. Class = 1. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.
A subsequence of (and may possibly coincide with) A038941. - R. J. Mathar, Jul 22 2008
3*x^2+5*x*y-3*y^2 and 5*x^2+9*x*y+y^2 are equivalent forms.
Also, primes of the form x^2 - 61y^2, of discriminant 244.

Examples

			a(8) = 73 because we can write 73 = 3*4^2+5*4*5-3*5^2 (or 73 = 5*3^2+9*3*1+1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).
Primes in A243654.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Maple
    select(p -> isprime(p) and nops([isolve(x^2 - 61*y^2 = p)])>0, [seq(2*i+1,i=1..1000)]); # Robert Israel, Jun 11 2014
  • Mathematica
    terms = 100; d = 61;
    Table[3*x^2 + 5*x*y - 3*y^2, {x, 1, terms}, {y, Floor[(5 - Sqrt[d])*x/6], Ceiling[(5 + Sqrt[d])*x/6]}] // Flatten // Select[#, Positive[#] && PrimeQ[#]&]& // Union // Take[#, terms]& (* Jean-François Alcover, Feb 28 2019 *)
Showing 1-2 of 2 results.