cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007777 Number of overlap-free binary words of length n.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 20, 24, 30, 36, 44, 48, 60, 60, 62, 72, 82, 88, 96, 112, 120, 120, 136, 148, 164, 152, 154, 148, 162, 176, 190, 196, 210, 216, 224, 228, 248, 272, 284, 296, 300, 296, 320, 332, 356, 356, 376, 400, 416, 380, 382, 376, 382, 356, 374, 392, 410
Offset: 0

Views

Author

Julien Cassaigne (cassaign(AT)clipper.ens.fr)

Keywords

References

  • J. Cassaigne, Counting overlap-free binary words, pp. 216-225 of STACS '93, Lect. Notes Comput. Sci., Springer-Verlag, 1993.
  • J. Cassaigne, Motifs évitables et régularités dans les mots (Thèse de Doctorat), Tech. Rep. LITP-TH 94-04, Institut Blaise Pascal, Paris, 1994.
  • Raphael M. Jungers, Vladimir Yu. Protasov and Vincent D. Blondel, Computing the Growth of the Number of Overlap-Free Words with Spectra of Matrices, in LATIN 2008: Theoretical Informatics, Lecture Notes in Computer Science, Volume 4957/2008, [From N. J. A. Sloane, Jul 10 2009]

Crossrefs

Programs

  • Maple
    delta:=linalg[matrix](4,4,[0,0,1,1,0,0,0,0,0,1,0,0,1,0,0,0]); iota:=linalg[matrix](4,4,[0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]); kappa:=linalg[matrix](4,4,[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0]);
    V:=proc(n) options remember: if n>7 and n mod 2 =1 then RETURN(evalm(kappa &* V((n+1)/2) &* transpose(delta) + delta &* V((n+1)/2) &* transpose(kappa))) elif n=5 then RETURN(linalg[matrix](4,4,[2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])) elif n=7 then RETURN(linalg[matrix](4,4,[0,0,2,0,0,2,0,0,2,0,0,0,0,0,0,0])) else RETURN(linalg[matrix](4,4,0)) fi: end;
    U:=proc(n) options remember: if n>7 and n mod 2 =1 then RETURN(evalm(iota &* V((n+1)/2) &* transpose(delta) + delta &* V((n+1)/2) &* transpose(iota) + (kappa+iota) &* U((n+1)/2) &* transpose(delta) + delta &* U((n+1)/2) &* transpose(kappa+iota))) elif n>7 and n mod 2 =0 then RETURN(evalm(iota &* V(n/2) &* transpose(iota) + delta &* V(n/2+1) &* transpose(delta) + (kappa+iota) &* U(n/2) &* transpose(kappa+iota) + delta &* U(n/2+1) &* transpose(delta))) elif n=4 then RETURN(linalg[matrix](4,4,[2,0,2,0,0,2,0,0,2,0,0,0,0,0,0,2])) elif n=5 then RETURN(linalg[matrix](4,4,[0,2,2,0,2,0,0,2,2,0,2,0,0,2,0,0])) elif n=6 then RETURN(linalg[matrix](4,4,[2,2,0,2,2,2,2,0,0,2,2,0,2,0,0,2])) elif n=7 then RETURN(linalg[matrix](4,4,[4,2,0,2,2,0,2,2,0,2,0,2,2,2,2,0])) fi: end;
    a:=proc(n) if n<4 then RETURN([1,2,4,6][n+1]) else RETURN(add(add(U(n)[i,j],i=1..4),j=1..4)) fi: end; seq(a(n),n=0..100); # Pab Ter (pabrlos2(AT)yahoo.com), Nov 09 2005
  • Mathematica
    delta = {{0, 0, 1, 1}, {0, 0, 0, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}};
    iota = {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 0}};
    kappa = {{0, 0, 1, 1}, {1, 1, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}};
    V[n_] := V[n] = Which[n > 7 && Mod[n, 2] == 1, delta . V[(n+1)/2] . Transpose[kappa] + kappa . V[(n+1)/2] . Transpose[delta], n == 5, {{2, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, n == 7, {{0, 0, 2, 0}, {0, 2, 0, 0}, {2, 0, 0, 0}, {0, 0, 0, 0}}, True, Array[0& , {4, 4}]];
    U[n_] := U[n] = Which[n > 7 && Mod[n, 2] == 1, delta . U[(n+1)/2] . Transpose[iota + kappa] + delta . V[(n+1)/2] . Transpose[iota] + iota . V[(n+1)/2] . Transpose[delta] + (iota + kappa) . U[(n+1)/2] . Transpose[delta], n > 7 && Mod[n, 2] == 0, delta.U[n/2+1] . Transpose[delta] + delta . V[n/2+1] . Transpose[delta] + iota . V[n/2] . Transpose[iota] + (iota + kappa) . U[n/2] . Transpose[iota + kappa], n == 4, {{2, 0, 2, 0}, {0, 2, 0, 0}, {2, 0, 0, 0}, {0, 0, 0, 2}}, n == 5, {{0, 2, 2, 0}, {2, 0, 0, 2}, {2, 0, 2, 0}, {0, 2, 0, 0}}, n == 6, {{2, 2, 0, 2}, {2, 2, 2, 0}, {0, 2, 2, 0}, {2, 0, 0, 2}}, n == 7, {{4, 2, 0, 2}, {2, 0, 2, 2}, {0, 2, 0, 2}, {2, 2, 2, 0}}];
    a[n_] := If[n < 4, {1, 2, 4, 6}[[n+1]], Sum[U[n][[i, j]], {i, 1, 4}, {j, 1, 4}]];
    Table[a[n], {n, 0, 56}] (* Jean-François Alcover, Jan 02 2013, translated from Pab Ter's Maple program *)

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 09 2005

A082379 Number of length-n 7/3-power-free words over the alphabet {0,1}.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 20, 24, 30, 40, 48, 56, 64, 76, 82, 92, 106, 124, 142, 152, 172, 192, 210, 220, 234, 256, 284, 308, 314, 332, 356, 372, 392, 420, 456, 488, 524, 560, 588, 608, 640, 684, 736, 764, 796, 832, 874, 892, 912, 948, 994, 1020, 1060, 1112, 1184
Offset: 0

Views

Author

Ralf Stephan, Apr 10 2003

Keywords

Crossrefs

Extensions

Name changed by Jeffrey Shallit, Sep 26 2014
More terms from Jeffrey Shallit, Jul 17 2021

A082380 Number of 7/3+-power-free words over the alphabet {0,1}.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 20, 30, 38, 50, 64, 86, 108, 136, 178, 222, 276, 330, 408, 500, 618, 774, 962, 1178, 1432, 1754, 2160, 2660, 3292
Offset: 0

Views

Author

Ralf Stephan, Apr 10 2003

Keywords

Crossrefs

Formula

Let L = lim a(n)^(1/n); then L exists since a(n) is submultiplicative. 1.2206318 < L < 1.22064482 (Shur 2012); the gap between the bounds can be made less than any given constant. Empirically, the upper bound is precise: L=1.2206448... . - Arseny Shur, Apr 26 2015

Extensions

Changed name by Jeffrey Shallit, Sep 26 2014
Showing 1-3 of 3 results.