cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038992 Number of sublattices of index n in generic 5-dimensional lattice.

Original entry on oeis.org

1, 31, 121, 651, 781, 3751, 2801, 11811, 11011, 24211, 16105, 78771, 30941, 86831, 94501, 200787, 88741, 341341, 137561, 508431, 338921, 499255, 292561, 1429131, 508431, 959171, 925771, 1823451, 732541, 2929531, 954305, 3309747, 1948705, 2750971, 2187581, 7168161, 1926221
Offset: 1

Views

Author

Keywords

References

  • Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #*DivisorSum[#, #*DivisorSum[#, #*DivisorSum[#, # &] &] &] &]; Array[a, 50] (* Jean-François Alcover, Dec 02 2015, after Joerg Arndt *)
    f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 4}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
  • PARI
    a(n)=sumdiv(n,x, x * sumdiv(x,y, y * sumdiv(y,z, z * sumdiv(z,w, w ) ) ) ); /* Joerg Arndt, Oct 07 2012 */

Formula

f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=5.
Multiplicative with a(p^e) = Product_{k=1..4} (p^(e+k)-1)/(p^k-1).
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)*zeta(s-3)*zeta(s-4). Dirichlet convolution of A038991 with A000583. - R. J. Mathar, Mar 31 2011
Sum_{k=1..n} a(k) ~ c * n^5, where c = Pi^6*zeta(3)*zeta(5)/2700 = 0.443822... . - Amiram Eldar, Oct 19 2022

Extensions

Offset changed from 0 to 1 by R. J. Mathar, Mar 31 2011
More terms from Joerg Arndt, Oct 07 2012