cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038994 Number of sublattices of index n in generic 7-dimensional lattice.

This page as a plain text file.
%I A038994 #27 May 08 2023 21:50:10
%S A038994 1,127,1093,10795,19531,138811,137257,788035,896260,2480437,1948717,
%T A038994 11798935,5229043,17431639,21347383,53743987,25646167,113825020,
%U A038994 49659541,210837145,150021901,247487059,154764793,861322255,317886556,664088461,678468820,1481689315
%N A038994 Number of sublattices of index n in generic 7-dimensional lattice.
%D A038994 Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.
%H A038994 Amiram Eldar, <a href="/A038994/b038994.txt">Table of n, a(n) for n = 1..10000</a>
%H A038994 <a href="/index/Su#sublatts">Index entries for sequences related to sublattices</a>.
%F A038994 f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=7.
%F A038994 Multiplicative with a(p^e) = Product_{k=1..6} (p^(e+k)-1)/(p^k-1).
%F A038994 Sum_{k=1..n} a(k) ~ c * n^7, where c = Pi^12*zeta(3)*zeta(5)*zeta(7)/3572100 = 0.325206... . - _Amiram Eldar_, Oct 19 2022
%t A038994 f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 6}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Aug 29 2019 *)
%Y A038994 Column 7 of A160870.
%Y A038994 Cf. A001001, A038991, A038992, A038993, A038995, A038996, A038997, A038998, A038999.
%K A038994 nonn,mult
%O A038994 1,2
%A A038994 _N. J. A. Sloane_
%E A038994 More terms from _Amiram Eldar_, Aug 29 2019