cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038995 Number of sublattices of index n in generic 8-dimensional lattice.

Original entry on oeis.org

1, 255, 3280, 43435, 97656, 836400, 960800, 6347715, 8069620, 24902280, 21435888, 142466800, 67977560, 245004000, 320311680, 866251507, 435984840, 2057753100, 943531280, 4241688360, 3151424000, 5466151440, 3559590240, 20820505200, 7947261556, 17334277800, 18326727760
Offset: 1

Views

Author

Keywords

References

  • Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 7}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)

Formula

f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=8.
Multiplicative with a(p^e) = Product_{k=1..7} (p^(e+k)-1)/(p^k-1).
Dirichlet g.f.: Product_{k=0..Q-1} zeta(s-k). - R. J. Mathar, Apr 01 2011
Sum_{k=1..n} a(k) ~ c * n^8, where c = Pi^20*zeta(3)*zeta(5)*zeta(7)/43401015000 = 0.285716... . - Amiram Eldar, Oct 19 2022

Extensions

Offset set to 1 by R. J. Mathar, Mar 01 2011
More terms from Amiram Eldar, Aug 29 2019