cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038996 Number of sublattices of index n in generic 9-dimensional lattice.

Original entry on oeis.org

1, 511, 9841, 174251, 488281, 5028751, 6725601, 50955971, 72636421, 249511591, 235794769, 1714804091, 883708281, 3436782111, 4805173321, 13910980083, 7411742281, 37117211131, 17927094321, 85083452531, 66186639441, 120491126959, 81870575521, 501457710611, 198682027181
Offset: 1

Views

Author

Keywords

References

  • Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 8}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)

Formula

f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=9.
Multiplicative with a(p^e) = Product_{k=1..8} (p^(e+k)-1)/(p^k-1).
Dirichlet g.f.: Product_{k=0..Q-1} zeta(s-k). - R. J. Mathar, Apr 01 2011
Sum_{k=1..n} a(k) ~ c * n^9, where c = Pi^20*zeta(3)*zeta(5)*zeta(7)*zeta(9) / 38578680000 = 0.254479... . - Amiram Eldar, Oct 19 2022

Extensions

Offset changed to 1 by R. J. Mathar, Apr 01 2011
More terms from Amiram Eldar, Aug 29 2019