This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038998 #23 Oct 21 2022 10:11:38 %S A038998 1,2047,88573,2794155,12207031,181308931,329554457,3269560515, %T A038998 5883904390,24987792457,28531167061,247486690815,149346699503, %U A038998 674597973479,1081213356763,3571013994483,2141993519227,12044352286330,6471681049901,34108336703805,29189626919861 %N A038998 Sublattices of index n in generic 11-dimensional lattice. %D A038998 Michael Baake, "Solution of the coincidence problem in dimensions", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44. %H A038998 Amiram Eldar, <a href="/A038998/b038998.txt">Table of n, a(n) for n = 1..10000</a> %H A038998 <a href="/index/Su#sublatts">Index entries for sequences related to sublattices</a>. %F A038998 f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=11. %F A038998 Multiplicative with a(p^e) = Product_{k=1..10} (p^(e+k)-1)/(p^k-1). %F A038998 Dirichlet g.f.: Product_{k=0..Q-1} zeta(s-k). %F A038998 Sum_{k=1..n} a(k) ~ c * n^11, where c = Pi^30*zeta(3)*zeta(5)*zeta(7)*zeta(9)*zeta(11)/4962689060175000 = 0.208520... . - _Amiram Eldar_, Oct 19 2022 %t A038998 f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 10}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Aug 29 2019 *) %Y A038998 Cf. A001001, A038991, A038992, A038993, A038994, A038995, A038996, A038997, A038999. %K A038998 nonn,mult %O A038998 1,2 %A A038998 _N. J. A. Sloane_ %E A038998 Offset set to 1 by _R. J. Mathar_, Apr 01 2011 %E A038998 More terms from _Amiram Eldar_, Aug 29 2019