This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A039691 #14 Sep 05 2017 08:19:07 %S A039691 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,22,23,24,25,26, %T A039691 27,30,31,32,33,34,35,36,40,41,42,43,44,45,50,51,52,53,54,60,61,62,63, %U A039691 70,71,72,80,81,90,100,101,102,103,104,105,106,107,108,109,110 %N A039691 If n=x1x2...xm in base 10, n belongs to the sequence iff x1x2..xm*11=y1y2...ym and xm..x2x1*11=ym...y2y1. %C A039691 This pattern works whenever the adjacent digits of a number do not add to more than 9. %C A039691 A059632(a(n)) = 11*a(n). - _Reinhard Zumkeller_, Jul 05 2014 %D A039691 D. Wells, Curious and interesting numbers, Penguin Books, p. 156 %H A039691 Reinhard Zumkeller, <a href="/A039691/b039691.txt">Table of n, a(n) for n = 1..10000</a> %e A039691 45*11=495 and 54*11=594, so 45 is a term. %o A039691 (Haskell) %o A039691 a039691 n = a039691_list !! (n-1) %o A039691 a039691_list = filter (f 0) [0..] where %o A039691 f d x = d' + d < 10 && (x < 10 || f d' x') where (x', d') = divMod x 10 %o A039691 -- _Reinhard Zumkeller_, Jul 05 2014 %o A039691 (PARI) isok(n) = my(d = digits(n), y = n*11); fromdigits(Vecrev(digits(y))) == fromdigits(Vecrev(d))*11; \\ _Michel Marcus_, Sep 05 2017 %Y A039691 Cf. A003714, A242407. %K A039691 easy,base,nonn %O A039691 1,3 %A A039691 _Felice Russo_ %E A039691 Offset corrected by _Reinhard Zumkeller_, Jul 05 2014