cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039696 If n = Product (p_j^k_j) then a(n) = Product (p_j) + Product (k_j).

This page as a plain text file.
%I A039696 #17 Feb 18 2022 13:05:54
%S A039696 2,3,4,4,6,7,8,5,5,11,12,8,14,15,16,6,18,8,20,12,22,23,24,9,7,27,6,16,
%T A039696 30,31,32,7,34,35,36,10,38,39,40,13,42,43,44,24,17,47,48,10,9,12,52,
%U A039696 28,54,9,56,17,58,59,60,32,62,63,23,8,66,67,68,36,70,71,72,12,74,75
%N A039696 If n = Product (p_j^k_j) then a(n) = Product (p_j) + Product (k_j).
%H A039696 Seiichi Manyama, <a href="/A039696/b039696.txt">Table of n, a(n) for n = 1..10000</a>
%F A039696 a(n) = A007947(n) + A005361(n).
%e A039696 14 = 2^1*7^1, a(14) = 2*7 + 1*1 = 15.
%t A039696 Array[Times @@ #1 + Times @@ #2 & @@ Transpose@ FactorInteger[#] &, 74] (* _Michael De Vlieger_, Feb 18 2022 *)
%o A039696 (PARI) a(n) = my(f=factor(n)); prod(k=1, #f~, f[k,1]) +  prod(k=1, #f~, f[k,2]); \\ _Michel Marcus_, Feb 18 2022
%Y A039696 Cf. A005361, A007947.
%K A039696 nonn,easy
%O A039696 1,1
%A A039696 _Olivier Gérard_