This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A039699 #104 Jun 18 2025 00:53:11 %S A039699 1,8,168,5120,190120,7939008,357713664,16993726464,839358285480, %T A039699 42714450658880,2225741588095168,118227198981126144, %U A039699 6380762273973278464,349019710593278412800,19310744204362333900800,1079054103459778710405120,60818479243449308702049960 %N A039699 Number of 4-dimensional cubic lattice walks that start and end at the origin after 2n steps, free to pass through origin at intermediate stages. %C A039699 Generating function G(x) is D-finite with a singular point at x = 1/64 (cf. Graph Link). After summing 300000 terms, G(1/64) = 1.239466... and 1 - 1/G(1/64) = 0.193201... Convergence to A086232 is very slow. - _Bradley Klee_, Aug 20 2018 %C A039699 a(n) is also the constant term in the expansion of (w + 1/w + x + 1/x + y + 1/y + z + 1/z)^(2n). This follows directly from the sequence name, each variable corresponding to a single step in one of the four axis directions. - _Christopher J. Smyth_, Sep 28 2018 %D A039699 S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 322-331. %H A039699 Seiichi Manyama, <a href="/A039699/b039699.txt">Table of n, a(n) for n = 0..557</a> %H A039699 S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/polya/flajolet.html">Symmetric Random Walk on n-Dimensional Integer Lattice</a>. [broken link] %H A039699 Steven R. Finch, <a href="/A054474/a054474.txt">Symmetric Random Walk on n-Dimensional Integer Lattice</a>. [Cached copy, with permission of the author] %H A039699 S. Hassani, J.-M. Maillard, and N. Zenine, <a href="https://arxiv.org/abs/2502.05543">On the diagonals of rational functions: the minimal number of variables (unabridged version)</a>, arXiv:2502.05543 [math-ph], 2025. See pp. 33, 44. %H A039699 Bradley Klee, <a href="/A039699/a039699_1.png">Graph of g.f.</a> %H A039699 Gilbert Labelle and Annie Lacasse, <a href="https://doi.org/10.46298/dmtcs.2937">Closed paths whose steps are roots of unity</a>, in FPSAC 2011, Reykjavik, Iceland DMTCS proc. AO, 2011, 599-610. %H A039699 Yen Lee Loh, <a href="https://arxiv.org/abs/1706.03083">A general method for calculating lattice Green functions on the branch cut</a>, arXiv:1706.03083 [math-ph], 2017. %H A039699 J. Novak, <a href="https://arxiv.org/abs/1301.3916">Pólya's random walk theorem</a>, arXiv:1301.3916 [math.PR], 2013. %F A039699 E.g.f.: Sum_{n>=0} a(2*n) * x^(2*n)/(2*n)! = I_0(2*x)^4. (I = Modified Bessel function of the first kind). %F A039699 a(n) = binomial(2*n,n)*A002895(n). - _Mark van Hoeij_, Apr 19 2013 %F A039699 a(n) = binomial(2*n,n)^2*hypergeom([1/2,-n,-n,-n],[1,1,1/2-n],1). - _Peter Luschny_, May 23 2017 %F A039699 a(n) ~ 2^(6*n+1) / (Pi*n)^2. - _Vaclav Kotesovec_, Nov 13 2017 %F A039699 From _Bradley Klee_, Aug 20 2018: (Start) %F A039699 G.f.: Define G(x) = Sum_{n>=0} a(n)*x^n and G^(j) = (d/dx)^j G(x), then Sum_{j=0..4,k=0..5} M_{j,k}*G^(j)*x^k = 0, with %F A039699 M={{-8, 768, 0, 0, 0, 0}, {1, -424, 14592, 0, 0, 0}, {0, 7, -1172, 25344, 0, 0}, {0, 0, 6, -640, 10240, 0}, {0, 0, 0, 1, -80, 1024}}. %F A039699 Sum_{j=0..2,k=0..4} M_{j,k}*a(n-j)*n^k = 0, with %F A039699 M={{0, 0, 0, 0, 1}, {-8, 52, -132, 160, -80}, {768, -3584, 5888, -4096, 1024}}. %F A039699 (End) %F A039699 a(n) = Sum_{i+j+k+l=n, 0<=i,j,k,l<=n} multinomial(2n [i,i,j,j,k,k,l,l]). - _Shel Kaphan_, Jan 16 2023 %e A039699 a(5)=7939008, i.e., there are 7939008 different walks that start and end at origin of a 4-dimensional integer lattice after 2*5=10 steps, free to pass through origin at intermediate steps. %p A039699 A039699 := n -> binomial(2*n,n)^2*hypergeom([1/2, -n, -n, -n],[1, 1, 1/2 - n], 1): %p A039699 seq(simplify(A039699(n)), n=0..14); # _Peter Luschny_, May 23 2017 %t A039699 max = 30 (* must be even *); Partition[ CoefficientList[ Series[ BesselI[0, 2 x]^4, {x, 0, max}], x]*Range[0, max]!, 2][[All, 1]] (* _Jean-François Alcover_, Oct 05 2011 *) %t A039699 With[{nn=30},Take[CoefficientList[Series[BesselI[0,2x]^4,{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* _Harvey P. Dale_, Aug 09 2013 *) %t A039699 RecurrenceTable[{256*(n-1)^2*(2*n-3)*(2*n-1)*a[n-2] - 4*(2*n-1)^2*(5*n^2-5*n+2)*a[n-1] + n^4*a[n]==0, a[0]==1, a[1]==8}, a, {n,0,100}] (* _Bradley Klee_, Aug 20 2018 *) %o A039699 (PARI) %o A039699 C=binomial; %o A039699 A002895(n) = sum(k=0,n, C(n,k)^2 * C(2*n-2*k,n-k) * C(2*k,k) ); %o A039699 a(n)= C(2*n,n) * A002895(n); %o A039699 /* _Joerg Arndt_, Apr 19 2013 */ %o A039699 (Python) %o A039699 from math import comb %o A039699 def A039699(n): return comb(n<<1,n)*((sum(comb(n,k)**2*comb(n-k<<1,n-k)*comb(m:=k<<1,k) for k in range(n+1>>1))<<1) + (0 if n&1 else comb(n,n>>1)**4)) # _Chai Wah Wu_, Jun 17 2025 %Y A039699 1-dimensional, 2-dimensional, 3-dimensional analogs are A000984, A002894, A002896. Pólya Constant: A086232. %Y A039699 Row k=4 of A287318. %K A039699 nonn,nice,easy,walk %O A039699 0,2 %A A039699 Alessandro Zinani (alzinani(AT)tin.it)