This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A039715 #21 Sep 08 2022 08:44:53 %S A039715 2,3,5,7,11,13,0,2,6,12,14,3,7,9,13,2,8,10,16,3,5,11,15,4,12,16,1,5,7, %T A039715 11,8,12,1,3,13,15,4,10,14,3,9,11,4,6,10,12,7,2,6,8,12,1,3,13,2,8,14, %U A039715 16,5,9,11,4,1,5,7,11,8,14,7,9,13,2,10,16,5 %N A039715 Primes modulo 17. %H A039715 Nathaniel Johnston, <a href="/A039715/b039715.txt">Table of n, a(n) for n = 1..10000</a> %F A039715 By the Prime Number Theorem in Arithmetic Progressions, all nonzero residue classes are equiprobable. In particular, Sum_{k=1..n} a(k) ~ 8.5n. - _Charles R Greathouse IV_, Apr 16 2012 %p A039715 seq(ithprime(n) mod 17, n=1..100); # _Nathaniel Johnston_, Jun 29 2011 %t A039715 Table[Mod[Prime[n], 17], {n, 100}] (* _Nathaniel Johnston_, Jun 29 2011 *) %t A039715 Mod[Prime[Range[100]], 17] (* _Vincenzo Librandi_, May 06 2014 *) %o A039715 (PARI) primes(100)%17 \\ _Charles R Greathouse IV_, Apr 16 2012 %o A039715 (Sage) [mod(p, 17) for p in primes(500)] # _Bruno Berselli_, May 05 2014 %o A039715 (Magma) [p mod(17): p in PrimesUpTo(500)]; // _Vincenzo Librandi_, May 06 2014 %Y A039715 Cf. A039701-A039706, A038194, A007652, A039709-A039714. %K A039715 nonn,easy %O A039715 1,1 %A A039715 _Clark Kimberling_