This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A039735 #17 Sep 04 2023 11:34:56 %S A039735 1,1,1,1,1,1,1,1,1,2,3,2,1,1,1,1,2,4,6,6,6,4,2,1,1,1,2,5,9,15,21,24, %T A039735 24,20,13,5,2,1,1,2,5,10,21,41,65,97,130,144,135,98,51,16,5,1,1,2,5, %U A039735 11,24,56,115,221,401,658,956,1217,1264,1042,631,275,72,14,1,1,2,5 %N A039735 Triangle read by rows: T(n,k) = number of nonisomorphic unlabeled planar graphs with n >= 1 nodes and 0 <= k <= 3n-6 edges. %C A039735 Planar graphs with n >= 3 nodes have at most 3n-6 edges. - _Charles R Greathouse IV_, Feb 18 2013 %D A039735 R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998. %D A039735 R. J. Wilson, Introduction to Graph Theory. Academic Press, NY, 1972, p. 162. %H A039735 F. Harary, <a href="http://dx.doi.org/10.1090/S0002-9947-1955-0068198-2">The number of linear, directed, rooted, and connected graphs</a>, Trans. Amer. Math. Soc. 78 (1955), 445-463. (MR0068198) See page 457, equation (2.9). %F A039735 From _Michael Somos_, Aug 23 2015: (Start) %F A039735 Sum_{k} T(n, k) = A005470(n) if n >= 1. %F A039735 log(1 + A(x, y)) = Sum_{n>0} B(x^n, y^n) / n where A(x, y) = Sum_{n>0, k>=0} T(n,k) * x^n * y^k and similarly B(x, y) with A049334. (End) %e A039735 Triangle starts %e A039735 n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 %e A039735 --:-- -- -- -- -- -- -- -- -- -- -- -- -- %e A039735 1: 1 %e A039735 2: 1 1 %e A039735 3: 1 1 1 1 %e A039735 4: 1 1 2 3 2 1 1 %e A039735 5: 1 1 2 4 6 6 6 4 2 1 %e A039735 6: 1 1 2 5 9 15 21 24 24 20 13 5 2 %Y A039735 Cf. A005470 (row sums), A008406, A049334. %K A039735 nonn,tabf,nice %O A039735 1,10 %A A039735 _Brendan McKay_