A039739 a(n)=2*q-prime(n), where q is the prime < p(n) for which (prime(n) mod q) is maximal.
1, 1, 3, 3, 1, 5, 3, 3, 5, 3, 1, 5, 3, 11, 5, 3, 1, 7, 3, 1, 3, 3, 5, 9, 5, 3, 11, 9, 5, 7, 3, 5, 3, 9, 7, 1, 3, 11, 5, 15, 13, 3, 1, 5, 3, 3, 3, 27, 25, 21, 15, 13, 3, 5, 11, 5, 3, 1, 17, 15, 5, 7, 3, 1, 9, 3, 9, 11, 9, 5, 3, 15, 9, 3, 3, 5, 1, 21, 13, 3, 1
Offset: 2
Keywords
Programs
-
Maple
A039739 := proc(n) local p,maxmod,q,qpiv ; p := ithprime(n) ; for j from 1 to n-1 do q := ithprime(j) ; if j = 1 then qpiv := q ; maxmod := modp(p,q) ; else if modp(p,q) > maxmod then maxmod := modp(p,q) ; qpiv := q ; end if; end if; end do: 2*qpiv-p ; end proc: seq(A039739(n),n=2..80) ; # R. J. Mathar, May 03 2021
Formula
a(n) = 2*A039734(n)-prime(n). - R. J. Mathar, May 03 2021