This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A039761 #38 Jan 03 2025 23:29:44 %S A039761 1,1,0,1,2,1,1,6,7,1,1,12,34,24,1,1,20,110,190,81,1,1,30,275,920,1051, %T A039761 268,1,1,42,581,3255,7371,5747,869,1,1,56,1092,9296,35686,57568,31060, %U A039761 2768,1,1,72,1884,22764,134022,373926,441652,166068,8689,1,1,90,3045,49680,418362,1812552,3803290,3342240,879541,26964,1 %N A039761 Triangle of D-analogs of Stirling numbers of the 2nd kind. %C A039761 Since T(n,k) = A039760(n,n-k), we have Sum_{n,k >= 0} T(n,k)*(x^n/n!)*y^k = Sum_{n,k >= 0} A039760(n,n-k)*((x*y)^n/n!)*(1/y)^(n-k) = Sum_{n,m >= 0} A039760(n,m)*((x*y)^n/n!)*(1/y)^m. Thus, to get the bivariate e.g.f.-o.g.f. of T(n,k), we perform the following transformation in the bivariate e.g.f.-o.g.f. of A039760: (x,y) -> (x*y, 1/y). - _Petros Hadjicostas_, Jul 11 2020 %H A039761 Ruedi Suter, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/SUTER/sut1.html">Two analogues of a classical sequence</a>, J. Integer Sequences, Vol. 3 (2000), #P00.1.8. %F A039761 Bivariate e.g.f.-o.g.f.: (exp(x*y) - x*y) * exp(1/(2*y)*(exp(2*x*y) - 1)). [Apply (x, y) -> (x*y, 1/y) to (exp(x) - x)*exp(y/2*(exp(2*x) - 1)). - _Petros Hadjicostas_, Jul 11 2020] %F A039761 T(n,k) = (Sum_{j=n-k..n} 2^(j+k-n)*binomial(n,j)*Stirling2(j, n-k)) - 2^(k-1)*n*Stirling2(n-1, n-k). [Use Proposition 3 in Suter (2000) with k -> n-k.] - _Petros Hadjicostas_, Jul 11 2020 %e A039761 Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: %e A039761 1; %e A039761 1, 0; %e A039761 1, 2, 1; %e A039761 1, 6, 7, 1; %e A039761 1, 12, 34, 24, 1; %e A039761 1, 20, 110, 190, 81, 1; %e A039761 1, 30, 275, 920, 1051, 268, 1; %e A039761 ... %Y A039761 Cf. A039760 (transposed triangle). %K A039761 nonn,tabl %O A039761 0,5 %A A039761 Ruedi Suter (suter(AT)math.ethz.ch) %E A039761 More terms from _Petros Hadjicostas_, Jul 12 2020