cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039765 Number of edges in the Hasse diagrams for the D-analogs of the partition lattices.

This page as a plain text file.
%I A039765 #18 Jul 10 2015 19:28:51
%S A039765 0,0,4,31,240,1931,16396,147589,1408224,14214559,151394940,1696783221,
%T A039765 19958826080,245788962199,3161635135340,42390110260685,
%U A039765 591257152058944,8563898444592927,128598641049231996
%N A039765 Number of edges in the Hasse diagrams for the D-analogs of the partition lattices.
%H A039765 R. Suter, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/SUTER/sut1.html">Two analogues of a classical sequence</a>, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
%F A039765 E.g.f.: f_4(x)*g_1(x)*e_1(f_2(x)) + e_1(x)*g_4(x)*e_1(g_2(x)) where e_n(x) = 1/n exp(n x); f_n(x) = 1/n (exp(n x) - 1); g_n(x) = 1/n (exp(n x) - 1 - n x).
%t A039765 max = 18; e[n_, x_] := E^(n*x)/n; f[n_, x_] := (E^(n*x) - 1)/n; g[n_, x_] := (E^(n*x) - 1 - n*x)/n; se = Series[ f[4, x]*g[1, x]*e[1, f[2, x]] + e[1, x]*g[4, x]*e[1, g[2, x]], {x, 0, max}]; CoefficientList[se, x]*Range[0, max]! (* _Jean-François Alcover_, May 04 2012, after e.g.f. *)
%Y A039765 Edges in the Hasse diagrams for partition lattices: A003128, B-analogs = A039759.
%K A039765 nonn,nice
%O A039765 0,3
%A A039765 Ruedi Suter (suter(AT)math.ethz.ch)