A039791 Sequence arising in search for Legendre sequences.
1, 1, 2, 4, 6, 14, 66, 95, 280, 1464, 2694, 10452, 41410, 95640, 323396, 1770963, 5405026, 13269146, 73663402, 164107650, 582538732, 3811895344, 7457847082, 30712068524, 151938788640, 353218528324, 1738341231644, 7326366290632, 17280039555348, 63583110959728
Offset: 1
Keywords
Examples
From _Travis Scott_, Nov 24 2022: (Start) If we decompose by weight the classes of period 2n+1 counted at A002729, a(n) appears as the twin towers of that triangle. a(n) | | (1) (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 3 4 4 3 2 1 1 1 1 1 2 4 6 6 4 2 1 1 1 1 1 1 3 7 10 14 14 10 7 3 1 1 1 1 1 3 7 18 34 54 66 66 54 34 18 7 3 1 1 1 1 1 3 11 25 49 75 95 95 75 49 25 11 3 1 1 1. (End)
Links
- Roderick J. Fletcher, Marc Gysin, and Jennifer Seberry, Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices, Australasian J. Combin. 23 (2001), 75-86.
Crossrefs
Programs
-
Mathematica
Module[{a,b,g,L,m,x,z,Z},Table[L=2n+1;Z=Sum[Sum[Product[g=L/GCD[L,(k-1)i+j];Subscript[x,#]^(1/#)&@If[k==1,g,m=MultiplicativeOrder[k,g];g/GCD[g,(k^m-1)/(k-1)]m],{i,L}]L/GCD[L,k-1],{j,GCD[L,k-1]}],{k,Select[Range@L,CoprimeQ[#,L]&]}]/L/EulerPhi@L/.Subscript[x,z_]->a^z+b^z;CoefficientList[Z,{a,b}][[n+1,n+2]],{n,30}]] (* Travis Scott, Nov 24 2022 *)
Formula
a(n) ~ C(2n+1, n)/(2n+1)/phi(2n+1)
Empirical: a(n) == 1 (mod 2) for 2n+1 of the form 2^k+1 but not of the form p^2, else == 0.
Extensions
More terms from Travis Scott, Nov 24 2022
Comments