This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A039815 #30 Sep 18 2022 12:36:33 %S A039815 1,-3,1,15,-9,1,-105,87,-18,1,947,-975,285,-30,1,-10472,12657,-4680, %T A039815 705,-45,1,137337,-188090,82887,-15960,1470,-63,1,-2085605,3159699, %U A039815 -1598954,370237,-43890,2730,-84,1,36017472,-59326371,33613353,-9009294,1292067,-103950,4662,-108,1 %N A039815 Triangle read by rows: matrix cube of the Stirling-1 triangle A008275. %H A039815 Seiichi Manyama, <a href="/A039815/b039815.txt">Rows n = 1..140, flattened</a> %H A039815 Gabriella Bretti, Pierpaolo Natalini and Paolo E. Ricci, <a href="https://doi.org/10.1515/gmj-2019-2007">A new set of Sheffer-Bell polynomials and logarithmic numbers</a>, Georgian Mathematical Journal, Feb. 2019, page 9. %F A039815 E.g.f. of k-th column: ((log(1+log(1+log(1+x))))^k)/k!. %e A039815 Triangle begins: %e A039815 1; %e A039815 -3, 1; %e A039815 15, -9, 1; %e A039815 -105, 87, -18, 1; %e A039815 947, -975, 285, -30, 1; %e A039815 -10472, 12657, -4680, 705, -45, 1; %e A039815 ... %p A039815 T:= Matrix(10,10,(i,j) -> `if`(i>= j, combinat:-stirling1(i,j),0)): %p A039815 M:= T^3: %p A039815 seq(seq(M[i,j],j=1..i),i=1..10); # _Robert Israel_, Sep 12 2022 %t A039815 Flatten[Table[SeriesCoefficient[(Log[1+Log[1+Log[1+x]]])^k, {x,0,n}] n!/k!, {n,9}, {k,n}]] (* _Stefano Spezia_, Sep 12 2022 *) %Y A039815 Cf. A000268 (first column), A008275. %Y A039815 Cf. A039811, A039814, A039816, A039817. %K A039815 sign,tabl %O A039815 1,2 %A A039815 _Christian G. Bower_, Feb 15 1999