This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A039816 #32 Sep 18 2022 12:36:37 %S A039816 1,-4,1,26,-12,1,-234,152,-24,1,2696,-2210,500,-40,1,-37919,36976, %T A039816 -10710,1240,-60,1,630521,-704837,245896,-36750,2590,-84,1,-12111114, %U A039816 15132932,-6120324,1109696,-101500,4816,-112,1,264051201,-362099010,165387680,-34990620,3901296,-241164,8232,-144,1 %N A039816 Triangle read by rows: matrix 4th power of the Stirling-1 triangle A008275. %H A039816 Seiichi Manyama, <a href="/A039816/b039816.txt">Rows n = 1..140, flattened</a> %H A039816 Gabriella Bretti, Pierpaolo Natalini and Paolo E. Ricci, <a href="https://doi.org/10.1515/gmj-2019-2007">A new set of Sheffer-Bell polynomials and logarithmic numbers</a>, Georgian Mathematical Journal, Feb. 2019, page 9. %F A039816 E.g.f. of k-th column: ((log(1+log(1+log(1+log(1+x)))))^k)/k!. %e A039816 Triangle begins: %e A039816 1; %e A039816 -4, 1; %e A039816 26, -12, 1; %e A039816 -234, 152, -24, 1; %e A039816 2696, -2210, 500, -40, 1; %e A039816 -37919, 36976, -10710, 1240, -60, 1; %e A039816 ... %p A039816 T:= Matrix(10,10,(i,j) -> `if`(i>= j, combinat:-stirling1(i,j),0)): %p A039816 M:= T^4: %p A039816 seq(seq(M[i,j],j=1..i),i=1..10); # _Robert Israel_, Sep 12 2022 %t A039816 Flatten[Table[SeriesCoefficient[(Log[1+Log[1+Log[1+Log[1+x]]]])^k,{x,0,n}] n!/k!, {n,9}, {k,n}]] (* _Stefano Spezia_, Sep 12 2022 *) %Y A039816 Cf. A000310 (first column), A008275. %Y A039816 Cf. A039812, A039814, A039815, A039817. %K A039816 sign,tabl %O A039816 1,2 %A A039816 _Christian G. Bower_, Feb 15 1999